PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Numerical study of turbulent separated flows in axisymmetric diffusers based on a two-fluid model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper discusses a numerical study of turbulent flow at Re = 1.56×104 in an axisymmetric diffuser with half-angle expansion α=14°, 18° и 90°. The results obtained are compared with known experimental data. The flow at the diffuser inlet is fully developed turbulent. To simulate the flow, a relatively recently developed two-fluid turbulence model in the Comsol Multiphysics software package was used. The paper also presents numerical results of the well-known SST and SA turbulence models, which are included in the Comsol Multiphysics software package. It is shown that the two-fluid turbulence model in the Comsol Multiphysics software package is capable of producing more accurate results than known models. In addition, it demonstrated good convergence and stability.
Rocznik
Strony
121--142
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
  • Information System and Mathematical Sciences, Plekhanov Russian University of Economics, UZBEKISTAN
  • Fluid Mechanics, 1Institute of Mechanics and Earthquake Engineering M.T. Urazbaev, Academy of Sciences of the Republic of Uzbekistan, UZBEKISTAN
  • Fluid Mechanics, Institute of Mechanics and Earthquake Engineering M.T. Urazbaev, Academy of Sciences of the Republic of Uzbekistan., UZBEKISTAN
autor
  • Fluid Mechanics, 1Institute of Mechanics and Earthquake Engineering M.T. Urazbaev, Academy of Sciences of the Republic of Uzbekistan, UZBEKISTAN
  • Applied Sciences, Tashkent University of Information Technologies, named after Muhammad al-Khwarizmi, UZBEKISTAN
Bibliografia
  • [1] Chang P.K.(1971): Separation of flow.– Elsevier, eBook ISBN: 9781483181288, p.796.
  • [2] John D. and Anderson J.R. (2008): Introduction to Flight.– McGraw-Hill, 616p.
  • [3] Young A.D. (1975): Aerodynamics.– by Clancy L.J., Pitman, pp.610, J. Fluid Mech., vol.77, No.3,pp.623-624, 1976, doi:10.1017/S0022112076212292.
  • [4] Cebeci T., Mosinskis G.J. and Smith A.M.O. (1972): Calculation of separation points in incompressible turbulent flows.– J. Aircr., vol.9, No.9, pp.618-624. https://doi.org/10.2514/3.59049.
  • [5] Uruba V. and Knob M. (2009): Dynamics of a boundary layer separation.– Eng. Mech., vol.16, No.1, pp.29-38.
  • [6] Gustavsson J. (1998): Experiments on turbulent flow separation.– Masters, vol.2, p.2.
  • [7] Yen S.C. and Yang C.W. (2011): Flow patterns and vortex shedding behavior behind a square cylinder.–J. Wind Eng. Ind. Aerodyn., vol.99, No.8, pp.868-878. https://doi.org/10.1016/j.jweia.2011.06.006.
  • [8] Wong M.K., Sheng L.C., Azwadi C.S.N. and Hashim G.A. (2015): Numerical study of turbulent flow inpipe with sudden expansion.– J. Adv. Res. Fluid Mech. Therm. Sci., vol.6, No.1, pp.34-48 ISSN (online):2289-7879.
  • [9] Berdanier R.A. (2011): Turbulent flow through an asymmetric plane diffuser.– Masters Purdue Univ. West Lafayette, Indiana, US. pp.1-35.
  • [10] Azad S., Riasi A., Mahmoodi Darian H. and Amiri Moghadam H. (2017): Parametric study of aviscoelastic RANS turbulence model in the fully developed channel flow.– Journal of Computational Applied Mechanics, vol.48, No.1, pp.65-74, DOI:10.22059/JCAMECH.2017.232031.138.
  • [11] Ghasemian M. and Nejat A. (2015): Aerodynamic noise computation of the flow field around NACA 0012airfoil using large eddy simulation and acoustic analogy.– Journal of Computational Applied Mechanics,vol.46, No.1, pp.41-50, DOI:10.22059/JCAMECH.2015.53392.
  • [12] Javanbakht A. and Ahmadi Danesh Ashtian H. (2018): Impeller and volute design and optimization of the centrifugal pump with low specific speed in order to extract performance curves.– Journal of Computational Applied Mechanics, vol.49, No.2, pp.359-366, DOI: 10.22059/JCAMECH.2018.246099.211.
  • [13] Chandavari V. and Palekar S. (2014): Diffuser angle control to avoid flow separation.– Int. J. Tech. Res. Appl., vol.2, No.5, pp.16-21.
  • [14] Fakhar M.H., Fakhar A., Tabatabaei H. and Nouri-Bidgoli H. (2020): Investigation of instable fluid velocityin pipes with internal nanofluid flow based on Navier-Stokes equations.– Journal of Computational Applied Mechanics, vol.51, No.1, pp.122-128, DOI:10.22059/JCAMECH.2020.300244.496.
  • [15] Noghrehabadi A., Daneh Dezfuli A. and Alipour F. (2019): Solving single phase fluid flow instability equations using Chebyshev Tau-QZ polynomial.– Journal of Computational Applied Mechanics, vol.50,No.1, pp.135-139, DOI:10.22059/JCAMECH.2018.250600.235.
  • [16] Abdelkarim B. and Djedid T. (2019): Numerical investigation of natural convection phenomena inuniformly heated trapezoidal cylinder inside an elliptical enclosure.– Journal of Computational Applied Mechanics, vol.50, No.2, pp.315-323, DOI: 10.22059/JCAMECH.2019.291495.442.
  • [17] Le H., Moin P. and Kim J. (1997): Direct numerical simulation of turbulent flow over a backward-facingstep.– J. Fluid Mech., vol.330, pp.349-374, DOI: https://doi.org/10.1017/S0022112096003941.
  • [18] Durst F., Melling A. and Whitelaw J.H. (1974): Low Reynolds number flow over a plane symmetric sudden expansion.– J. Fluid Mech., vol.64, No.1, pp.111-128, DOI: https://doi.org/10.1017/S0022112074002035.
  • [19] Cherdron W., Durst F. and Whitelaw J.H. (1978): Asymmetric flows and instabilities in symmetric ducts with sudden expansions.– J. Fluid Mech., vol.84, No.1, pp.13-31, DOI: https://doi.org/10.1017/S0022112078000026.
  • [20] Törnblom O., Herbst A. and Johansson A.V (2004): Separation control in a plane asymmetric diffuser by means of streamwise vortices experiment, modelling and simulation.– in The 5th Symposium on Smart Control of Turbulence, pp.1-21.
  • [21] Stieglmeier M., Tropea C., Weiser N. and Nitsche W. (1989): Experimental investigation of the flow through axisymmetric expansions.– J. Fluids Eng. Trans. ASME, vol.111, No.4, pp.464-471, doi: 10.1115/1.3243669.
  • [22] Sagar D., Paul A.R. and Jain A. (2011): Computational fluid dynamics investigation of turbulent separated flows in axisymmetric diffusers.– Int. J. Eng. Sci. Technol., vol.3, No.2,DOI:10.4314/ijest.v3i2.68138, pp.104-109.
  • [23] Malikov Z. (2020): Mathematical model of turbulence based on the dynamics of two fluids.– Appl. Math. Model., vol.82, pp.409-436, https://doi.org/10.1016/j.apm.2020.01.047.
  • [24] Malikov Z.M. and Madaliev M.E. (2021): New two-fluid turbulence model based numerical simulation of flow in a flat suddenly expanding channel.– Her. Bauman Moscow State Tech. Univ. Ser. Nat. Sci.,No.4, doi: 10.18698/1812-3368-2021-4-24-39.
  • [25] Madaliev M.E. (2023): Numerical simulation of turbulent flows on the basis of a two-fluid model of turbulence.– Vestn. Tomsk. Gos. Univ. Mat. i Mekhanika, No.82, doi: 10.17223/19988621/82/10.
  • [26] Malikov Z.M. and Madaliev M.E. (2021): Numerical simulation of flow in a two-dimensional flat diffuser based on two fluid turbulence models.– Comput. Res. Model., vol.13, No.6, doi: 10.20537/2076-7633-2021-13-6-1149-1160. DOI: 10.20537/2076-7633-2021-13-6-1149-1160.
  • [27] Menter F. (1993): Zonal two equation kw turbulence models for aerodynamic flows.– in 23rd Fluid Dynamics, Plasma dynamics, and Lasers Conference, p.2906. https://doi.org/10.2514/6.1993-2906.
  • [28] Spalart P. and Allmaras S. (1992): A one-equation turbulence model for aerodynamic flows.– in 30th Aerospace Sciences Meeting and Exhibit, p.439, https://doi.org/10.2514/6.1992-439.
  • [29] Spalart P.R. (1997): Comments on the feasibility of LES for wings and on the hybrid RANS/LES approach.– in Proceedings of the First AFOSR International Conference on DNS/LES, pp.137-147, CRID1571698601146488576.
  • [30] Patankar S. (2018): Numerical Heat Transfer and Fluid Flow.– Taylor & Francis,https://doi.org/10.1201/9781482234213.
  • [31] Menter F.R. (2002): Methoden, Moeglichkeiten und Grenzen numerischer Stroemungsberechnungen.–Numet. Erlangen, pp.1-15.
  • [32] Kholboev B.M., Navruzov D.P., Asrakulova D.S., Engalicheva N.R. and Turemuratova A.A. (2022):Comparison of the results for calculation of vortex currents after sudden expansion of the pipe with different diameters.– International Journal of Applied Mechanics and Engineering, vol.27, No.2, pp.115-123, https://doi.org/10.2478/ijame-2022-0023.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0542ba4e-7ee1-4021-87f2-4f7b6556656f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.