PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distribution of Selected Drug-resistant Enterococcus Species in Meat Plants in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to assess the prevalence of enterococci (including vancomycin-resistant, VRE) strains in meat plants and evaluate their biofilm-forming potential. In two Polish meat plants, 75 samples of raw pork meat, swabs from work surfaces (floors, tables, machine parts and tools) and employees’ hands were collected. The analyses indicated that enterococci were present in more than 72% of the tested samples. In addition, VRE isolates were found in more than 25% of the tested samples (especially in cutting and processing rooms). VRE strains of Enterococcus faecium and E. faecalis were resistant to penicillin, ampicillin, erythromycin, and rifampicin. Moreover, 77% of E. faecium and 43% of E. faecalis isolates showed biofilm-forming ability. The observed high biofilm-forming potential among the analyzed VRE strains indicates that these agents may play an essential role in spreading drug resistance in the food chain through contaminated surfaces, meat, and workers’ hands.
Słowa kluczowe
Rocznik
Tom
Strony
345--359
Opis fizyczny
Bibliogr. 38 po., rys., tab.
Twórcy
  • Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
  • Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
  • Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
Bibliografia
  • 2001/471/EC: Commission Decision of 8 June 2001 laying down rules for the regular checks on the general hygiene carried out by the operators in establishments according to Directive 64/433/EEC on health conditions for the production and marketing of fresh meat and Directive 71/118/EEC on health problems affecting the production and placing on the market of fresh poultry meat (Text with EEA relevance) (notified under document number C(2001) 1561).
  • Abebe, G.M. (2020). The Role of Bacterial Biofilm in Antibiotic Resistance and Food Contamination. International Journal of Microbiology, 2020, 1705814. DOI: 10.11 55/2020/1705814
  • Argudín, M. A., Deplano, A., Meghraoui, A., Dodémont, M., Heinrichs, A., Denis, O., Nonhoff, C., Roisin, S. (2017). Bacteria from Animals as a Pool of Antimicrobial Resistance Genes. Antibiotics, 6(2):12. DOI: 10.3390/antibiotics6020012
  • CDC. Antibiotic Resistance Threats in the United States, 2019. (2019). Atlanta, GA: U.S. Department of Health and Human Services, CDC. www.cdc.gov/info [06-09-2022]
  • Ch'ng, J.H., Chong, K., Lam, L.N., Wong, J.J., Kline, K.A. (2019). Biofilm-associated infection by enterococci. Nature reviews. Microbiology, 17(2), 82-94. DOI: 10.10 38/s41579-018-0107-z
  • Chotinantakul, K., Chansiw, N., Okada, S. (2020). Biofilm formation and transfer of a streptomycin resistance gene in enterococci from fermented pork. Journal of Global Antimicrobial Resistance, 22, 434-440. DOI: 10.1016/j.jgar.2020.04.016
  • del Campo, R., Ruiz-Garbajosa, P., Sánchez-Moreno, M. P., Baquero, F., Torres, C., Cantón, R., Coque, T.M. (2003). Antimicrobial resistance in recent fecal enterococci from healthy volunteers and food handlers in Spain: genes and phenotypes. Microbial drug resistance (Larchmont, N.Y.), 9(1), 47-60. DOI: 10.1089/10766290 3764736346
  • EUCAST. (2022). European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters. Version 12.0, 2022 http://www.eucast.org [06-04-2022]
  • Galié, S., García-Gutiérrez C., Miguélez E.M., Villar C.J., Lombó F. (2018). Biofilms in the Food Industry: Health Aspects and Control Methods. Frontiers In Microbiology, 9, 898. DOI: 10.3389/fmicb.2018.00898
  • Giraffa, G. (2002). Enterococci from foods. FEMS microbiology reviews, 26(2), 163-171. DOI: 10.1111/j.1574-6976.2002.tb00608.x
  • Hanchi, H., Mottawea, W., Sebei, K., Hammami, R. (2018). The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. Frontiers in Microbiology, 3, 1791.
  • Hanchi, H., Mottawea, W., Sebei, K., Hammami, R. (2018). The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. Frontiers in microbiology, 9, 1791. DOI: 10.3389/fmicb.2018.01791
  • Iweriebor, B.C., Obi, L.C., Okoh, A.I. (2015). Virulence and antimicrobial resistance factors of Enterococcus spp. isolated from fecal samples from piggery farms in Eastern Cape, South Africa. BMC microbiology, 15, 136. DOI: 10.1186/s12866-015-0468-7
  • Jackson, J., Villarroe, A. (2012). A survey of the risk of zoonoses for veterinarians. Zoonoses and Public Health, 59, 193-201. DOI: 10.1111/j.1863-2378.2011.01432.x
  • Jovanovic J., Nikolic, A., Brankovic, Lazic I. , Mrdovic, B., Raseta, M., Lilic, S., Geric, T. (2021). Food contact surfaces and food handler’s hygiene in one Serbian retail chain - estimation and trend. IOP Conf. Series: Earth and Environmental Science, 854, 012041. DOI: 10.1088/1755-1315/854/1/012041
  • Kročko, M., Čanigová, M., Ducková, V. (2008). Occurrence of enterococci in raw pork and beef and their antibiotics multiresistance. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, LVI, 2, 101-106. DOI: 10.11118/actaun2008 56020101
  • Lambrechts, Aa., Human, Is., Doughari, Jh, Lues, Jfr. (2014). Bacterial contamination of the hands of food handlers as indicator of hand washing efficacy in some convenient food industries in South Africa. Pakistan Journal Of Medical Sciences, 30(4), 755-758. PMID: 25097511.
  • Ławniczek-Wałczyk, A., Górny, R.L. (2022). Biofilm as a threat in food production and processing facilities. Bezpieczeństwo Pracy: nauka i praktyka, 3, 10-15. DOI: 10.542 15/BP.2022.03.6.Lawniczek-Walczyk (in Polish).
  • Lawpidet, P., Tengjaroenkul, B., Saksangawong, C., Sukon, P. (2021). Global Prevalence of Vancomycin-Resistant Enterococci in Food of Animal Origin: A Meta-Analysis. Foodborne pathogens and disease, 18(6), 405-412. DOI: 10.1089/fpd. 2020.2892
  • Lebreton, F., Willems, R. J.L., Gilmore, M.S. (2014). Enterococcus diversity, origins in nature, and gut colonization. IN: M.S. Gilmore, D.B. Clewell, Y. Ike (Eds), Enterococci: from Commensals to Leading Causes of Drug Resistant Infection, (1-46). Boston, MA: Massachusetts Eye and Ear Infirmary.
  • López-Salas, P., Llaca-Díaz, J., Morfin-Otero, R., Tinoco, J. C., Rodriguez-Noriega, E., Salcido-Gutierres, L., González, G. M., Mendoza-Olazarán, S., Garza-González, E. (2013). Virulence and antibiotic resistance of Enterococcus faecalis clinical isolates recovered from three states of Mexico. Detection of linezolid resistance. Archives of medical research, 44(6), 422-428. DOI: 10.1016/j.arcmed.2013.07.003
  • Losito, P., Visciano P., Genualdo, M., Satalino, R., Migailo, M., Ostuni, A., Luisi, A., Cardone, G. (2017). Evaluation of hygienic conditions of food contact surfaces in retail outlets: six years of monitoring. LWT – Food Science and Technology, 77, 67-71. DOI: 10.1016/j.lwt.2016.11.029
  • Lues, J.F.R., Van Tonder, I. (2007). The occurrence of indicator bacteria on hands and aprons of food handlers in the delicatessen sections of a retail group. Food Control, 18, 326-332. DOI: 10.1016/j.foodcont.2005.10.010
  • Nadimpalli, M.L., Stewart, J.R., Pierce, E., Pisanic, N., Love, D.C., Hall, D., Larsen, J., Carroll, K.C., Tekle, T., Perl, T.M., Heaney, C.D. (2018). Face Mask Use and Persistence of Livestock-associated Staphylococcus aureus Nasal Carriage among Industrial Hog Operation Workers and Household Contacts, USA. Environmental health perspectives, 126(12), 127005. DOI: 10.1289/EHP3453
  • Novais, C., Coque, T.M., Costa, M.J., Sousa, J.C., Baquero, F., Peixe, L.V. (2005). High occurrence and persistence of antibiotic-resistant enterococci in poultry food samples in Portugal. The Journal of antimicrobial chemotherapy, 56(6), 1139-1143. DOI: 10.1093/jac/dki360
  • PN-A-82055-19: Determination of microbiological and surface cleanliness devices, equipment, rooms, as well as packaging and hands of employees. (03-07-2000).
  • Regulation (EC) No 1831/2003 Of The European Parliament and of The Council of 22 September 2003 on additives for use in animal nutrition..OJ L 268, 18.10. 29-43
  • Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC OJ L 4, 7.1. 2019, s. 43-167.
  • Rybak, B., Potrykus, M., Plenis, A., Wolska, L. (2022). Raw Meat Contaminated with Cephalosporin-Resistant Enterobacterales as a Potential Source of Human Home Exposure to Multidrug-Resistant Bacteria. Molecules, 27(13), 4151. DOI: 10.3390/ molecules27134151
  • Said, M.S, Tirthani, E., Lesho, E. Enterococcus Infections. (2022). StatPearls Treasure Island (FL): StatPearls Publishing.
  • Schlegelová, J., Babák, V., Holasová, M., Konstantinová, L., Necidová, L., Šišák, F., Vlkov,á H., Roubal, P., Jaglic, Z. (2010). Microbial contamination after sanitation of food contact surfaces in dairy and meat processing plants. Czech Journal of Food Sciences, 28(5), 450-461. DOI: 10.17221/65/2009-CJFS
  • Stepanović, S., Vuković, D., Hola, V., Di Bonaventura, G., Djukić, S., Cirković, I., Ruzicka, F. (2007). Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica, 115(8), 891-899. DOI: 10.1111/j.1600-0463.2007.apm_630.x
  • Vidovic, N., Vidovic, S. (2020). Antimicrobial Resistance and Food Animals: Influence of Livestock Environment on the Emergence and Dissemination of Antimicrobial Resistance. Antibiotics (Basel, Switzerland), 9(2), 52. DOI: 10.3390/antibiotics9020052
  • WHO. (2021). WHO strategic priorities on antimicrobial resistance: preserving antimicrobials for today and tomorrow. https://www.who.int/publications/i/item/9789240041387 [07-09-2022]
  • Woźniak-Biel, A., Bugla-Płoskońska, G., Burdzy, J., Korzekwa, K., Ploch, S., Wieliczko, A. (2019). Antimicrobial Resistance and Biofilm Formation in Enterococcus spp. Isolated from Humans and Turkeys in Poland. Microbial drug resistance (Larchmont, N.Y.), 25(2), 277-286. DOI: 10.1089/mdr.2018.0221
  • Xiong, W., Sun, Y., Zeng, Z. (2018). Antimicrobial use and antimicrobial resistance in food animals. Environmental science and pollution research international, 25(19), 18377-18384. DOI: 10.1007/s11356-018-1852-2
  • Zhao, J., Liu, R., Sun, Y., Yang, X., Yao, J. (2022). Tracing enterococci persistence along a pork production chain from feed to food in China. Animal Nutrition, 9, 223-232. DOI: 10.1016/j.aninu.2022.01.005
  • Zhu, T., Yang, C., Bao, X., Chen, F., Guo, X. (2022). Strategies for controlling biofilm formation in food industry. Grain & Oil Science and Technology, 2022, DOI: 10.1016/ j.gaost.2022.06.003
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-053b884f-e053-4485-83c5-83987fd50437
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.