PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the post-rolling direction of severely plastic deformed Aluminum-Manganese-Silicon alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Constrained groove pressing (CGP) as a severe plastic deformation (SPD) technique was applied on Al-Mn-Si sheets. In the following, direct- and cross-rolling were employed as supplementary processing in order to investigate the rolling-direction effect on CGPed sheets. The in-depth characterization of microstructural evolutions were employed using polarized light microscope and scanning electron microscope. Williamson–Hall analysis method was applied on X-ray diffraction (XRD) patterns of specimens. Analysis of XRD results revealed that post-rolling of CGPed sheets induced dynamic recrystallization (DRX) due to massive dislocations’ accumulation which follows by crystallite growth. The largest crystallite size which was 619 nm achieved after direct-rolling through the rolling strain of 1.27. Maximum acquired peak intensity ratio for rolled sheets was for (220) crystallographic plane similar to annealed one. Also, post-rolling had altered the distinguished plane from (111) for CGPed sheets into (220). Mechanical characteristics of specimens were examined using hardness and tension tests. Based on the obtained results, direct-rolling of CGPed samples was more susceptible for strength enhancement compared to cross-rolling. Optimum achieved values for yield and ultimate tensile strength were 155 and 197 MPa, respectively. Rolling in the both longitudinal and cross directions had almost similar effect on the final attained hardness.
Rocznik
Strony
876--887
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
  • Young Researchers and Elites Club, Saveh Branch, Islamic Azad University, Saveh, Iran
  • Department of Advanced Materials, WorldTech Scientific Research Center (WT-SRC), Tehran, Iran
autor
  • Young Researchers and Elites Club, Saveh Branch, Islamic Azad University, Saveh, Iran
autor
  • Young Researchers and Elites Club, Saveh Branch, Islamic Azad University, Saveh, Iran
  • Department of Materials Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
Bibliografia
  • [1] S. Valipour, A. Eivani, H. Jafarian, S. Seyedein, M. Aboutalebi, Effect of pre-deformation thermomechanical processing on the development of ultrafine grain structure during equal channel angular extrusion, Materials & Design 89 (2016) 377–384.
  • [2] M.Y. Murashkin, I. Sabirov, A. Medvedev, N. Enikeev, W. Lefebvre, R. Valiev, et al., Mechanical and electrical properties of an ultrafine grained Al – 8.5 wt.% RE (RE = 5.4 wt.% Ce, 3.1 wt.% La) alloy processed by severe plastic deformation, Materials & Design 90 (2016) 433–442.
  • [3] R. Luri, J. Fuertes, C. Luis, D. Salcedo, I. Puertas, J. León, Experimental modelling of critical damage obtained in Al-Mg and Al-Mn alloys for both annealed state and previously deformed by ECAP, Materials & Design 90 (2016) 881–890.
  • [4] K. Edalati, Z. Horita, A review on high-pressure torsion (HPT) from 1935 to 1988, Materials Science and Engineering: A 652 (2016) 325–352.
  • [5] N. Haghdadi, A. Zarei-Hanzaki, H. Abedi, D. Abou-Ras, M. Kawasaki, A. Zhilyaev, Evolution of microstructure and mechanical properties in a hypoeutectic Al-Si-Mg alloy processed by accumulative back extrusion, Materials Science and Engineering: A 651 (2016) 269–279.
  • [6] D. Jafarlou, E. Zalnezhad, M. Hassan, M. Ezazi, N. Mardi, A. Hamouda, et al., Severe plastic deformation of tubular AA 6061 via equal channel angular pressing, Materials & Design 90 (2016) 1124–1135.
  • [7] M. Ruppert, C. Schunk, D. Hausmann, H.W. Höppel, M. Göken, Global and local strain rate sensitivity of bimodal Al-laminates produced by accumulative roll bonding, Acta Materialia 103 (2016) 643–650.
  • [8] N. Thangapandian, S.B. Prabu, K. Padmanabhan, Effects of die profile on grain refinement in Al-Mg alloy processed by repetitive corrugation and straightening, Materials Science and Engineering: A 649 (2016) 229–238.
  • [9] M.R. Jandaghi, H. Pouraliakbar, M.K.G. Shiran, G. Khalaj, M. Shirazi, On the effect of non-isothermal annealing and multi-directional forging on the microstructural evolutions and correlated mechanical and electrical characteristics of hot- deformed Al-Mg alloy, Materials Science and Engineering: A (2016).
  • [10] H. Pouraliakbar, S. Firooz, M.R. Jandaghi, G. Khalaj, A. Amirafshar, Combined effect of heat treatment and rolling on pre-strained and SPDed aluminum sheet, Materials Science and Engineering: A 612 (2014) 371–379.
  • [11] H. Pouraliakbar, S. Firooz, M.R. Jandaghi, G. Khalaj, A. Nazari, Predicting the ultimate grain size of aluminum sheets undergone constrained groove pressing, The International Journal of Advanced Manufacturing Technology (2016) 1–20.
  • [12] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science 45 (2000) 103–189.
  • [13] I. Nikulin, R. Kaibyshev, T. Sakai, Superplasticity in a 7055 aluminum alloy processed by ECAE and subsequent isothermal rolling, Materials Science and Engineering: A 407 (2005) 62–70.
  • [14] K.-T. Park, H.-J. Lee, C.S. Lee, D.H. Shin, Effect of post-rolling after ECAP on deformation behavior of ECAPed commercial Al-Mg alloy at 723 K, Materials Science and Engineering: A 393 (2005) 118–124.
  • [15] H. Akamatsu, T. Fujinami, Z. Horita, T.G. Langdon, Influence of rolling on the superplastic behavior of an Al-Mg-Sc alloy after ECAP, Scripta Materialia 44 (2001) 759–764.
  • [16] O. Mishin, A. Godfrey, D.J. Jensen, N. Hansen, Recovery and recrystallization in commercial purity aluminum cold rolled to an ultrahigh strain, Acta Materialia 61 (2013) 5354–5364.
  • [17] T. Yu, N. Hansen, X. Huang, Linking recovery and recrystallization through triple junction motion in aluminum cold rolled to a large strain, Acta Materialia 61 (2013) 6577–6586.
  • [18] Q. Liu, X. Huang, D. Lloyd, N. Hansen, Microstructure and strength of commercial purity aluminium (AA 1200) cold-rolled to large strains, Acta Materialia 50 (2002) 3789–3802.
  • [19] S.S. Hazra, A.A. Gazder, A. Carman, E.V. Pereloma, Effect of cold rolling on as – ECAP interstitial free steel, Metallurgical and Materials Transactions A 42 (2011) 1334–1348.
  • [20] V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev, Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling, Materials Science and Engineering: A 343 (2003) 43–50.
  • [21] K.-T. Park, H.-J. Lee, C.S. Lee, W.J. Nam, D.H. Shin, Enhancement of high strain rate superplastic elongation of a modified 5154 Al by subsequent rolling after equal channel angular pressing, Scripta Materialia 51 (2004) 479–483.
  • [22] O. Antonova, A.Y. Volkov, B. Kamenetskii, D. Komkova, Microstructure and mechanical properties of thin magnesium plates and foils obtained by lateral extrusion and rolling at room temperature, Materials Science and Engineering: A 651 (2016) 8–17.
  • [23] A. Shirdel, A. Khajeh, M. Moshksar, Experimental and finite element investigation of semi-constrained groove pressing process, Materials & Design 31 (2010) 946–950.
  • [24] M.R. Rezaei, M.R. Toroghinejad, F. Ashrafizadeh, Production of nano-grained structure in 6061 aluminum alloy strip by accumulative roll bonding, Materials Science and Engineering: A 529 (2011) 442–446.
  • [25] Z. Zhang, F. Zhou, E. Lavernia, On the analysis of grain size in bulk nanocrystalline materials via X-ray diffraction, Metallurgical and Materials Transactions A 34 (2003) 1349–1355.
  • [26] F. Humphreys, The nucleation of recrystallization at second phase particles in deformed aluminium, Acta Metallurgica 25 (1977) 1323–1344.
  • [27] F. Humphreys, Local lattice rotations at second phase particles in deformed metals, Acta Metallurgica 27 (1979) 1801–1814.
  • [28] Q. Liu, Z. Yao, A. Godfrey, W. Liu, Effect of particles on microstructural evolution during cold rolling of the aluminum alloy AA3104, Journal of Alloys and Compounds 482 (2009) 264–271.
  • [29] H. Merchant, J. Morris, D. Hodgson, Characterization of intermetallics in aluminum alloy 3004, Materials Characterization 25 (1990) 339–373.
  • [30] E. Gomaa, M. Mohsen, A. Taha, M. Mostafa, A study of annealing stages in Al-Mn (3004) alloy after cold rolling using positron annihilation lifetime technique and Vickers microhardness measurements, Materials Science and Engineering: A 362 (2003) 274–279.
  • [31] S. Chen, N. Kuijpers, S. Van Der Zwaag, Effect of microsegregation and dislocations on the nucleation kinetics of precipitation in aluminium alloy AA3003, Materials Science and Engineering: A 341 (2003) 296–306.
  • [32] H.-W. Huang, B.-L. Ou, Evolution of precipitation during different homogenization treatments in a 3003 aluminum alloy, Materials & Design 30 (2009) 2685–2692.
  • [33] M. Komarasamy, R. Mishra, Serration behavior and shear band characteristics during tensile deformation of an ultrafine-grained 5024 Al alloy, Materials Science and Engineering: A 616 (2014) 189–195.
  • [34] A. Lens, C. Maurice, J. Driver, Grain boundary mobilities during recrystallization of Al-Mn alloys as measured by in situ annealing experiments, Materials Science and Engineering: A 403 (2005) 144–153.
  • [35] D. Jia, K. Ramesh, E. Ma, Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron, Acta Materialia 51 (2003) 3495–3509.
  • [36] P. Changizian, A. Zarei-Hanzaki, M. Ghambari, A. Imandoust, Flow localization during severe plastic deformation of AZ81 magnesium alloy: micro-shear banding phenomenon, Materials Science and Engineering: A 582 (2013) 8–14.
  • [37] G. Wu, D. Juul Jensen, Recrystallisation kinetics of aluminium AA1200 cold rolled to true strain of 2, Materials Science and Technology 21 (2005) 1407–1411.
  • [38] T. Furu, R. Ørsund, E. Nes, Subgrain growth in heavily deformed aluminium—experimental investigation and modelling treatment, Acta Metallurgica et Materialia 43 (1995) 2209–2232.
  • [39] P. Mukherjee, A. Sarkar, P. Barat, S. Bandyopadhyay, P. Sen, S. Chattopadhyay, et al., Deformation characteristics of rolled zirconium alloys: a study by X-ray diffraction line profile analysis, Acta Materialia 52 (2004) 5687–5696.
  • [40] P. Sahu, M. De, S. Kajiwara, Microstructural characterization of stress-induced martensites evolved at low temperature in deformed powders of Fe-Mn-C alloys by the Rietveld method, Journal of Alloys and Compounds 346 (2002) 158–169.
  • [41] H. Pal, A. Chanda, M. De, Characterisation of microstructure of isothermal martensite in Fe-23Ni-3.8 Mn by Rietveld method, Journal of Alloys and Compounds 278 (1998) 209–215.
  • [42] T. Ungár, The meaning of size obtained from broadened X-ray diffraction peaks, Advanced Engineering Materials 5 (2003) 323–329.
  • [43] A. Krishnaiah, U. Chakkingal, P. Venugopal, Production of ultrafine grain sizes in aluminium sheets by severe plastic deformation using the technique of groove pressing, Scripta Materialia 52 (2005) 1229–1233.
  • [44] A. Krishnaiah, U. Chakkingal, P. Venugopal, Applicability of the groove pressing technique for grain refinement in commercial purity copper, Materials Science and Engineering: A 410 (2005) 337–340.
  • [45] K.R. Mamaghani, M. Kazeminezhad, The effect of direct and cross-rolling on mechanical properties and microstructure of severely deformed aluminum, Journal of Materials Engineering and Performance 23 (2014) 115–124.
  • [46] J.-C. Lee, H.-K. Seok, J.-H. Han, Y.-H. Chung, Controlling the textures of the metal strips via the continuous confined strip shearing (C2S2) process, Materials Research Bulletin 36 (2001) 997–1004.
  • [47] G.G. Niranjan, U. Chakkingal, Deep drawability of commercial purity aluminum sheets processed by groove pressing, Journal of Materials Processing Technology 210 (2010) 1511–1516.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05397427-0ee3-46f5-8fce-cdf317897ec2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.