PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kompleksowy przegląd metod preparatyki, właściwości i zastosowań fotokatalitycznych różnych struktur perowskitowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
A comprehensive review of preparation methods, properties and photocatalytic performance of diverse perovskite structures
Języki publikacji
PL
Abstrakty
EN
Perovskite materials for photocatalytic environmental and energy conversion applications have drawn excessive attention over recent years owing to their unique photoelectric and catalytic properties. As harvesting solar energy within the bounds of possibility is one of the main aims of photocatalysis, many research groups have devoted their efforts to developing perovskite-based photocatalytic materials from perovskite oxide to metal halide and double halide-based perovskite materials with various synthesis strategies. Particularly, halide and double halide-based perovskites are intriguing thanks to their tunable band gap and band structure depending on the type of halide. Apart from the obstacles related to charge separation and transport processes; instability under water, oxygen, and high temperature hindering their practical photocatalytic application are remaining challenges. Toxicity emerging from Pb2+ or Sn2+ release due to chemical instability is another concern to be tackled. Thusfar, replacing Pb2+ or Sn2+ with Bi3+ is one of the currentscopesin the perovskite photocatalysis area while ensuring chemical stability in halide-based perovskites and thus reducing toxicity. Despite all those challenges, the popularity of perovskite photocatalysis is growing amid the favorable light induced chemical reactions via a plentiful range of promising cost-effective manufacturing methods of perovskites. In this review, the principles and photocatalytic applications of the perovskite oxides, metal halide-based perovskites, and double halide-based are comprehensively discussed.
Rocznik
Strony
243--262
Opis fizyczny
Bibliogr. 92 poz., rys., tab., wykr.
Twórcy
  • Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
autor
  • Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
  • Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
Bibliografia
  • [1] E.A. Katz, Helv. Chim. Acta, 2020, 103, e2000061.
  • [2] G. Rose, Ann. Phys., 1839, 124, 551.
  • [3] B. Diouf, A. Muley, R. Pode, Energies, 2023, 16,.
  • [4] S.A. Khandy, D.C. Gupta, J. Magn. Magn. Mater., 2018, 458, 176.
  • [5] Q. Mahmood, S.A. Ali, M. Hassan, A. Laref, Mater. Chem. Phys., 2018, 211, 428.
  • [6] Y. Wu, L. Qiu, J. Liu, M. Guan, Z. Dai, G. Li, Adv. Opt. Mater., 2022, 10, 2102661.
  • [7] J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, Chem. Rev., 2020, 120, 7867.
  • [8] Z. Jia, C. Cheng, X. Chen, L. Liu, R. Ding, J. Ye, J. Wang, L. Fu, Y. Cheng, Y. Wu, Mater. Adv., 2022, 4, 79.
  • [9] M. Irshad, Q. tul Ain, M. Zaman, M.Z. Aslam, N. Kousar, M. Asim, M. Rafique, K. Siraj, A.N. Tabish, M. Usman, M. ul Hassan Farooq, M.A. Assiri, M. Imran, RSC Adv., 2022, 12, 7009.
  • [10] A. Kumar, A. Kumar, V. Krishnan, ACS Catal., 2020, 10, 10253.
  • [11] S. Behara, T. Poonawala, T. Thomas, Comput. Mater. Sci., 2021, 188, 110191.
  • [12] X. Ye, X. Wang, Z. Liu, B. Zhou, L. Zhou, H. Deng, Y. Long, Dalt. Trans., 2022, 51, 1745.
  • [13] P.M. Bulemo, I.D. Kim, J. Korean Ceram. Soc., 2020, 57, 24.
  • [14] J. Park, W.A. Saidi, B. Chorpening, Y. Duan, Chem. Mater., 2022, 34, 6108.
  • [15] Q. Wang, Z. Chen, Y. Chen, N. Cheng, Q. Hui, Ind. Eng. Chem. Res., 2012, 51, 11821.
  • [16] Y. Zhang, Q. Zhong, Y. Bu, D. Meng, H. Gu, Q. Lu, Y. Zhao, G. Zhu, Energy and Fuels, 2021, 35, 17353.
  • [17] J. Mi, J. Chen, X. Chen, X. Liu, J. Li, Chem. - A Eur. J., 2023, 29,.
  • [18] V.-H. Nguyen, H.H. Do, T. Van Nguyen, P. Singh, P. Raizada, A. Sharma, S.S. Sana, A.N. Grace, M. Shokouhimehr, S.H. Ahn, C. Xia, S.Y. Kim, Q. Van Le, Sol. Energy, 2020, 211, 584.
  • [19] G. Li, M. Li, R. Taylor, Y. Hao, G. Besagni, C.N. Markides, Appl. Therm. Eng., 2022, 209, 118285.
  • [20] K. Maeda, M. Eguchi, T. Oshima, Angew. Chemie Int. Ed., 2014, 53, 13164.
  • [21] M. Roudgar-Amoli, E. Abedini, A. Alizadeh, Z. Shariatinia, J. Ind. Eng. Chem., 2024, 129, 579.
  • [22] S. Zeng, P. Kar, U.K. Thakur, K. Shankar, Nanotechnology, 2018, 29,.
  • [23] J. Wang, T. Wang, Z. Zhao, R. Wang, C. Wang, F. Zhou, S. Li, L. Zhao, M. Feng, J. Alloys Compd., 2022, 902, 163865.
  • [24] A. Zaleska-Medynska, Metal Oxide-Based Photocatalysis: Fundamentals and Prospects for Application, Elsevier, 2018.
  • [25] R.I. Walton, Chem. - A Eur. J., 2020, 26, 9041.
  • [26] H. Mizoguchi, K. Ueda, M. Orita, S.-C. Moon, K. Kajihara, M. Hirano, H. Hosono, Mater. Res. Bull., 2002, 37, 2401.
  • [27] C. Wattanawikkam, T. Kansa-ard, W. Pecharapa, Appl. Surf. Sci., 2019, 474, 169.
  • [28] U. Sulaeman, S. Yin, T. Sato, Appl. Catal. B Environ., 2011, 105, 206.
  • [29] Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama, T. Maeda, Y. Sakata, S. Okunaka, H. Tokudome, M. Katayama, S. Akiyama, H. Nishiyama, Y. Inoue, T. Takewaki, T. Setoyama, T. Minegishi, T. Takata, T. Yamada, K. Domen, Joule, 2018, 2, 509.
  • [30] G. Li, Z. Yi, Y. Bai, W. Zhang, H. Zhang, Dalt. Trans., 2012, 41, 10194.
  • [31] M. Passi, B. Pal, Powder Technol., 2021, 388, 274.
  • [32] H. Zhang, G. Chen, Y. Li, Y. Teng, Int. J. Hydrogen Energy, 2010, 35, 2713.
  • [33] H. Yang, C. Han, X. Xue, J. Environ. Sci., 2014, 26, 1489.
  • [34] M. Passi, B. Pal, Korean J. Chem. Eng., 2022, 39, 942.
  • [35] T. Soltani, X. Zhu, A. Yamamoto, S.P. Singh, E. Fudo, A. Tanaka, H. Kominami, H. Yoshida, Appl. Catal. B Environ., 2021, 286, 119899.
  • [36] F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.-M. Liu, Adv. Mater., 2007, 19, 2889.
  • [37] J. Xu, C. Sun, Z. Wang, Y. Hou, Z. Ding, S. Wang, Chem. - A Eur. J., 2018, 24, 18512.
  • [38] S. Mazumdar, Y. Zhao, X. Zhang, Front. Electron., 2021, 2, 1.
  • [39] H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Nature, 2021, 598, 304.
  • [40] T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature, 2020, 581, 411.
  • [41] Q.A. Akkerman, L. Manna, ACS Energy Lett., 2020, 5, 604.
  • [42] W. Ke, M.G. Kanatzidis, Nat. Commun., 2019, 10, 1.
  • [43] P. Nandigana, S. Pari, D. Sujatha, M. Shidhin, C. Jeyabharathi, S.K. Panda, ChemistrySelect, 2023, 8, e202204731.
  • [44] C. He, X. Liu, Light Sci. Appl., 2023, 12, 15.
  • [45] K. Ren, S. Yue, C. Li, Z. Fang, K.A.M. Gasem, J. Leszczynski, S. Qu, Z. Wang, M. Fan, J. Mater. Chem. A, 2022, 10, 407.
  • [46] F. Temerov, Y. Baghdadi, E. Rattner, S. Eslava, ACS Appl. Energy Mater., 2022, 5, 14605.
  • [47] B. Li, S. Li, J. Gong, X. Wu, Z. Li, D. Gao, D. Zhao, C. Zhang, Y. Wang, Z. Zhu, Chem, 2024, 10, 35.
  • [48] S. Shyamal, S.K. Dutta, N. Pradhan, J. Phys. Chem. Lett., 2019, 10, 7965.
  • [49] Z.-C. Kong, J.-F. Liao, Y.-J. Dong, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, ACS Energy Lett., 2018, 3, 2656.
  • [50] Y. Guo, G. Liu, Z. Li, Y. Lou, J. Chen, Y. Zhao, ACS Sustain. Chem. Eng., 2019, 7, 15080.
  • [51] M. Miodyńska, O. Kaczmarczyk, W. Lisowski, A. Żak, T. Klimczuk, M. Paszkiewicz, A. Zaleska-Medynska, Appl. Surf. Sci., 2024, 643, 158725.
  • [52] Z. Jin, Z. Zhang, J. Xiu, H. Song, T. Gatti, Z. He, J. Mater. Chem. A, 2020, 8, 16166.
  • [53] M. Miodyńska, T. Klimczuk, W. Lisowski, A. Zaleska-Medynska, Catal. Commun., 2023, 177, 106656.
  • [54] Y. Cui, L. Yang, X. Wu, J. Deng, X. Zhang, J. Zhang, J. Mater. Chem. C, 2022, 10, 16629.
  • [55] C. Tedesco, L. Malavasi, Molecules, 2023, 28,.
  • [56] Y. Tang, C.H. Mak, C. Wang, Y. Fu, F.-F. Li, G. Jia, C.-W. Hsieh, H.-H. Shen, J.C. Colmenares, H. Song, M. Yuan, Y. Chen, H.-Y. Hsu, Small Methods, 2022, 6, 2200326.
  • [57] S.S. Bhosale, A.K. Kharade, E. Jokar, A. Fathi, S. Chang, E.W.-G. Diau, J. Am. Chem. Soc., 2019, 141, 20434.
  • [58] V.H. Nguyen, T. Lee, T.D. Nguyen, ACS Appl. Nano Mater., 2023, 6, 3435.
  • [59] M. Miodyńska, A. Mikolajczyk, P. Mazierski, T. Klimczuk, W. Lisowski, G. Trykowski, A. Zaleska-Medynska, Appl. Surf. Sci., 2022, 588, 152921.
  • [60] S. Ghosh, H. Shankar, P. Kar, Mater. Adv., 2022, 3742.
  • [61] O.A. Lozhkina, A.A. Murashkina, M.S. Elizarov, V. V. Shilovskikh, A.A. Zolotarev, Y. V. Kapitonov, R. Kevorkyants, A. V. Emeline, T. Miyasaka, Chem. Phys. Lett., 2018, 694, 18.
  • [62] M. Cernea, F. Vasiliu, C. Plapcianu, C. Bartha, I. Mercioniu, I. Pasuk, R. Lowndes, R. Trusca, G. V. Aldica, L. Pintilie, J. Eur. Ceram. Soc., 2013, 33, 2483.
  • [63] D.J. Kubicki, M. Saski, S. Macpherson, K. Gałkowski, J. Lewiński, D. Prochowicz, J.J. Titman, S.D. Stranks, Chem. Mater., 2020, 32, 8129.
  • [64] D. Wu, Y. Tao, Y. Huang, B. Huo, X. Zhao, J. Yang, X. Jiang, Q. Huang, F. Dong, X. Tang, J. Catal., 2021, 397, 27.
  • [65] R. Chahal, A. Bora, P.K. Giri, ACS Appl. Energy Mater., 2023, 6, 8794.
  • [66] T. Chen, M. Zhou, W. Chen, Y. Zhang, S. Ou, Y. Liu, Sustain. Energy Fuels, 2021, 5, 3598.
  • [67] M.D.I. Bhuyan, S. Das, M.A. Basith, J. Alloys Compd., 2021, 878, 2.
  • [68] A. Schmitz, L. Leander Schaberg, S. Sirotinskaya, M. Pantaler, D.C. Lupascu, N. Benson, G. Bacher, CS Energy Lett., 2020, 5, 559.
  • [69] Z. Liu, H. Yang, J. Wang, Y. Yuan, K. Hills-Kimball, T. Cai, P. Wang, A. Tang, O. Chen, Nano Lett., 2021, 21, 1620.
  • [70] Z. Chen, X. Li, Y. Wu, A. Duan, D. Wang, Q. Yang, Y. Fan, Sep. Purif. Technol., 2022, 302, 122079.
  • [71] H. Mai, D. Chen, Y. Tachibana, H. Suzuki, R. Abe, R.A. Caruso, Chem. Soc. Rev., 2021, 50, 13692.
  • [72] E. Meyer, D. Mutukwa, N. Zingwe, R. Taziwa, Metals (Basel)., 2018, 8,.
  • [73] Y. Cai, Z. Lu, X. Xu, Y. Gao, T. Shi, X. Wang, L. Shui, Materials (Basel)., 2023, 16,.
  • [74] T.T. Tran, J.R. Panella, J.R. Chamorro, J.R. Morey, T.M. McQueen, Mater. Horizons, 2017, 4, 688.
  • [75] Z. He, Q. Tang, X. Liu, X. Yan, K. Li, D. Yue, Energy and Fuels, 2021, 35, 15005.
  • [76] Y. Zhang, Z. Sun, Z. Wang, Y. Zang, X. Tao, Int. J. Hydrogen Energy, 2022, 47, 8829.
  • [77] L. Zhou, Y.F. Xu, B.X. Chen, D. Bin Kuang, C.Y. Su, Small, 2018, 14, 1.
  • [78] Y. Wang, H. Huang, Z. Zhang, C. Wang, Y. Yang, Q. Li, D. Xu, Appl. Catal. B Environ., 2021, 282,.
  • [79] M.S. Sena, J. Cui, Y. Baghdadi, E. Rattner, M. Daboczi, A.L. Lopes-Moriyama, A.G. dos Santos, S. Eslava, ACS Appl. Energy Mater., 2023, 6, 10193.
  • [80] K. Guo, P. Lin, D. Wu, Z. Shi, X. Chen, Y. Han, Y. Tian, X. Li, Chem. - A Eur. J., 2023, 29, 2.
  • [81] K. Li, S. Li, W. Zhang, Z. Shi, D. Wu, X. Chen, P. Lin, Y. Tian, X. Li, J. Colloid Interface Sci., 2021, 596, 376.
  • [82] S. Peng, Z. Yang, M. Sun, L. Yu, Y. Li, Adv. Mater., 2023, 35, 2304711.
  • [83] S. Purohit, S. Shyamal, S.K. Saini, K.L. Yadav, M. Kumar, S. Satapathi, Energy and Fuels, 2022, 36, 12170.
  • [84] L. Wu, S. Zheng, H. Lin, S. Zhou, A. Mahmoud Idris, J. Wang, S. Li, Z. Li, J. Colloid Interface Sci., 2023, 629, 233.
  • [85] P. Han, C. Luo, W. Zhou, J. Hou, C. Li, D. Zheng, K. Han, J. Phys. Chem. C, 2021, 125, 11743.
  • [86] S. Zhang, Y. Yuan, J. Gu, X. Huang, P. Li, K. Yin, Z. Xiao, D. Wang, Appl. Surf. Sci., 2023, 609, 155446.
  • [87] H. Sudrajat, M. Kitta, R. Ito, S. Nagai, T. Yoshida, R. Katoh, B. Ohtani, N. Ichikuni, H. Onishi, J. Phys. Chem. C, 2020, 124, 15285.
  • [88] F. Fresno, P. Jana, P. Reñones, J.M. Coronado, D.P. Serrano, V.A. De La Peña O’Shea, Photochem. Photobiol. Sci., 2017, 16, 17.
  • [89] J. Xie, P. Bai, C. Wang, N. Chen, W. Chen, M. Duan, H. Wang, ACS Appl. Energy Mater., 2022, 5, 9559.
  • [90] S. Schünemann, M. van Gastel, H. Tüysüz, ChemSusChem, 2018, 11, 2057.
  • [91] Y.-F. Xu, M.-Z. Yang, B.-X. Chen, X.-D. Wang, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, J. Am. Chem. Soc., 2017, 139, 5660.
  • [92] L. Romani, A. Speltini, F. Ambrosio, E. Mosconi, A. Profumo, M. Marelli, S. Margadonna, A. Milella, F. Fracassi, A. Listorti, F. De Angelis, L. Malavasi, Angew. Chemie Int. Ed., 2021, 60, 3611.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05350379-0283-41a3-8a1e-a4504dd1c301
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.