Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The subject of the paper is an unsymmetrical sandwich beam. The thicknesses and mechanical properties of the beam faces are different. Mathematical model of the beam is formulated based on the classical broken-line hypothesis. The equations of motions of the beam is derived on the ground of the Hamilton’s principle. Bending, buckling and free-vibration are studied in detail for exemplary unsymmetrical structure of the beam. The values of deflection, critical force and natural frequency are determined for the selected beam cases. Moreover, the same examples are computed with the use of two FEM systems, i.e. SolidWorks and ABAQUS, in order to compare the analytical and numerical calculation. The results are presented in tables and figures.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
491--512
Opis fizyczny
Bibliogr. 26 pozy., rys., tab., wykr.
Twórcy
autor
- Institute of Rail Vehicles TABOR Warszawska 181, 61-055 Poznan, Poland
autor
- Institute of Mathematics Poznan University of Technology Piotrowo 3A, 60-965 Poznan, Poland
autor
- Institute of Rail Vehicles TABOR Warszawska 181, 61-055 Poznan, Poland
autor
- Institute of Rail Vehicles TABOR Warszawska 181, 61-055 Poznan, Poland
Bibliografia
- 1. Vinson J.R., Sandwich structures, Applied Mechanics Reviews, 54(3): 201–214, 2001.
- 2. Carrera E., Historical review of zig-zag theories for multilayers plates and shells, Applied Mechanics Reviews, 56(3): 287–308, 2003.
- 3. Frostig Y., Shenhar Y., High-order bending of sandwich beams with a transversely flexible core and unsymmetrical laminated composite skins, Composites Engineering, 5(4): 405–414, 1995.
- 4. Icardi U., Applications of Zig-Zag theories to sandwich beams, Mechanics of Advanced Materials and Structures, 10(1): 77–97, 2003.
- 5. Kim J., Swanson S.R., Effect of unequal face thickness on load resistance of sandwich beams, Journal of Sandwich Structures and Materials, 6(2): 145–166, 2004.
- 6. Backstöm D., Nilsson A., Modeling flexural vibration of a sandwich beam using modified fourth-order theory, Journal of Sandwich Structures and Materials, 8(6): 465–476, 2006.
- 7. Magnucka-Blandzi E., Magnucki K., Effective design of a sandwich beam with metal foam core, Thin-Walled Structures, 45: 432–438, 2007.
- 8. Magnucka-Blandzi E., Dynamic stability and static stress state of a sandwich beam with a metal foam core using three modified Timoshenko hypothesis, Mechanics of Advanced Materials and Structures, 18(2): 147–158, 2011.
- 9. Wang Z.D., Li Z.F., Theoretical analysis of the deformation of SMP sandwich beam in flexure, Archive of Applied Mechanics, 81: 1667–1678, 2011.
- 10. Baba B.O., Free vibration analysis of curved sandwich beams with face/core debond using theory and experiment, Mechanics of Advanced Materials and Structures, 19(5): 350–359, 2012.
- 11. Eltaher M.A., Alshorbagy A.E., Mahmoud F.F., Determination of neutral axis position and its effect on neutral frequencies of functionally graded macro/nanobeams, Composite Structures, 99: 193–201, 2013.
- 12. Jasion P., Magnucki K., Global buckling of a sandwich column with metal foam core, Journal of Sandwich Structures and Materials, 15(6): 718–732, 2013.
- 13. Magnucki K., Jasion P., Szyc W., Smyczyński M., Strength and buckling of a sandwich beam with thin binding layers between faces and a metal foam core, Steel and Composite Structures, 16(3): 325–337, 2014.
- 14. Wu H., Kitipornchai S., Yang J., Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets, International Journal of Structural Stability and Dynamics, 15(7): No. 1540011, 2015.
- 15. Filippi M., Carrera E., Bending and vibrations analyses of laminated beams by using a zig-zag-layer-wise theory, Composites Part B, 98: 269–280, 2016.
- 16. Frostig Y., Shear buckling of sandwich plates – Incompressible and compressible cores, Composites Part B, 96(1): 153–172, 2016.
- 17. Kim N-I., Lee J., Geometrically nonlinear isogeometric analysis of functionally graded plates based on first-order shear deformation theory considering physical neutral surface, Composite Structures, 153: 804–814, 2016.
- 18. Chen D., Kitipornchai S., Yang J., Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core, Thin-Walled Structures, 107: 39–48, 2016.
- 19. Magnucka-Blandzi E., Rodak M., Bending and buckling of a metal seven-layer beam with lengthwise corrugated main core – comparative analysis with sandwich beam, Journal of Theoretical and Applied Mechanics, 55(1): 41–53, 2017.
- 20. Magnucka-Blandzi E., Bending and buckling of a metal seven-layer beam with crosswise corrugated main core – comparative analysis with sandwich beam, Composite Structures, 183(1): 35–41, 2018.
- 21. Sayyad A.S., Ghugal Y.M., Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature, Composite Structures, 171: 486–504, 2017.
- 22. Yang Y., Pagani A., Carrera E., Exact solutions for free vibration analysis of laminated, box and sandwich beams by refined layer-wise theory, Composite Structures, 175: 28–45, 2017.
- 23. Vo T.P., Thai H-T., Nguyen T-K., Lanc D., Karamanli A., Flexural analysis of laminated composite and sandwich beams using a four-unknown shear and normal deformation theory, Composite Structures, 176: 388–397, 2017.
- 24. Zhen W., Yang C., Zhang H., Zheng X., Stability of laminated composite and sandwich beams by a Reddy-type higher-order zig-zag theory, Mechanics of Advanced Materials and Structures, (Published online: 12 Mar 2018).
- 25. Sayyad A.S., Ghugal Y.M., Modeling and analysis of functionally graded sandwich beams: A review, Mechanics of Advanced Materials and Structures, (Published online: 19 Mar 2018).
- 26. Magnucki K., Bending of symmetrically sandwich beams and I-beams – Analytical study, International Journal of Mechanical Science, 150: 411–419, 2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-053051b5-1506-436f-8a27-139dda15a8e3