
Jan Dªugosz University in Cz¦stochowa

Scienti�c Issues, Mathematics XV, Cz¦stochowa 2010

A BOOLEAN ENCODING

OF ARITHMETIC OPERATIONS

Andrzej Zbrzezny

Institute of Mathematics and Computer Science

Jan Dªugosz University in Cz¦stochowa

al. Armii Krajowej 13/15, 42-200 Cz¦stochowa, Poland

e-mail: a.zbrzezny@ajd.czest.pl

Abstract. In this paper we present algorithms for a Boolean encoding of four basic

arithmetic operations on integer numbers: addition, subtraction, multiplication and

division. Integer numbers are encoded in two's complement system as vectors of

Boolean formulae, and arithmetic operations are faithfully encoded as operations on

vectors of Boolean formulae.

1. Introduction

Boolean encoding of arithmetic operations is an important issue in some areas

of symbolic model checking, for example, in SAT-based model checking for

timed automata with discrete data (TADD), i.e. timed automata augmented

with integer variables. The �rst attempt to develop bounded model checking

for TADD was undertaken in [9]. However, the set of arithmetic operations

considered in this paper was limited to addition and subtraction of integer

variables.

In Saturn [7], the system for static analysis of programs that was devel-

oped at Stanford University, Boolean encoding of arithmetic operations is also

limited. In an unpublished technical report [1] there are listed many opera-

tions for constructing and manipulating vectors of Boolean formulae, among

others, addition and subtraction. But for multiplication and division there are

mentioned only restricted versions of operations on Boolean formulae: namely,

multiplication and division of a Boolean vector by a constant integer number

and division of a Boolean vector by a constant integer number.

178 Andrzej Zbrzezny

There are many tools which make use of a Boolean encoding of arithmetic

operations. One of them is C32SAT � a tool for checking C expressions by

means of satis�ability testing [2]. C32SAT parses the input expression and

builds a parse tree, which is transformed into an And-Inverter Graph. After-

wards, the graph is transformed into conjunctive normal form and passed to

a SAT solver.

In this paper we show how to encode faithfully the four basic arithmetic

operations for integer numbers: addition, subtraction, multiplication and di-

vision. Our algorithms for Boolean encoding of the operations in question

are based on standard algorithms well-known in the theory of computer arith-

metic.

In the technical report [8] we have also provided algorithms for a Boolean

encoding of the operation of calculating integer square root and of the opera-

tion of exponentiation with nonnegative integer exponent.

2. Basic notions and notations

De�nition 1. Let V be a nonempty set of propositional variables. The set

F(V) of Boolean formulae over V is de�ned by the following grammar:

f ::= false | true | p | ¬f | f ∨ f | f ∧ f

The propositional variables and the constants false and true are called

atomic Boolean formulae. In order to enhance readability of Boolean encoding

of arithmetic operations we shall use two auxiliary propositional connectives:

⊕ (exclusive disjunction) and ≡ (biconditional), de�ned in the standard way:

f ⊕ g = (f ∧ ¬g) ∨ (¬f ∧ g) f ≡ g = (f ∧ g) ∨ (¬f ∧ ¬g)

We assume that, from greatest to lowest priority, the priority order is as

follows: ¬, ∧, ∨, ⊕, ≡.

De�nition 2. Let B2 = 〈{0, 1}, −, ∪, ∩ , 0, 1〉 be the two element Boolean

algebra. A valuation v is a mapping from the set of atomic Boolean formulae

to the universe of the Boolean algebra B2 satisfying the condition v(false) = 0
and v(true) = 1. The set of all the valuations will be denoted by Val(V).

It is well known that each valuation v can be uniquely extended to a ho-

momorphism hv from the algebra of formulae 〈F(V), ¬, ∨, ∧ false, true〉
to the Boolean algebra B2.

From now on we shall write F and Val instead of F(V) and Val(V) respec-
tively, as we assume that the set V of the propositional variables is �xed.

A Boolean encoding of arithmetic operations 179

De�nition 3. A vector of Boolean values is a �nite, nonempty sequence of

Boolean values 0 and 1.

As the Boolean values 0 and 1 can be identi�ed with binary digits, from now

on, vectors of Boolean values will be called bit vectors. Every bit vector will be

interpreted as an integer encoded in the two's-complement system. Namely,

let a = 〈an−1, . . . , a0〉 be a bit vector of length n. De�ne the interpretation

I(a) in the following standard way:

I(a) =

(
n−1∑
i=0

ai · 2i
)
− (an−1 · 2n) .

De�nition 4. A vector of Boolean formulae (a Boolean vector for short) is

a �nite, nonempty sequence of Boolean formulae. A set of all the Boolean

vectors of length n will be denoted by BVn.

Let x = 〈xn−1, . . . , x0〉 be a Boolean vector and v be a valuation. Then

a sequence Hv(x) = 〈hv(xn−1), . . . , hv(x0)〉 is a bit vector that will be inter-

preted as a number I(Hv(x)). From now on we shall write Iv(x) instead of

I(Hv(x)).
It it well known from computer arithmetic that in two's complement rep-

resentation of a number b the most signi�cant bit is equal to 1 if and only if

the number b is negative. Recall also that for every bit vector a of length n,
the following hold:

−2n−1 ≤ I(a) ≤ 2n−1 − 1. (1)

3. Encoding of arithmetic relations and operations

We start with an obvious observation that the result of an arithmetic operation

may not �t in the two's complement representation of a given length n. This is
clear for addition, subtracting and multiplication. There is also one particular

case for division. Namely, when a dividend is equal to −2n−1−1 and a divisor

is equal to −1, the result, which is equal to 2n−1, does not �t into n bits.

Such a situation is called an over�ow. This motivates the following notion of

faithful encoding.

Let ◦ be a binary arithmetic operation and let � be a binary operation

on Boolean vectors. We say that the operation � encodes the operation ◦
faithfully if and only if for every x, y ∈ BVn and every v ∈ Val,

−2n−1 ≤ Iv(x) ◦ Iv(y) ≤ 2n−1 − 1 =⇒ Iv(x � y) = Iv(x) ◦ Iv(y).

180 Andrzej Zbrzezny

The de�nition of the faithfully encoding of a unary arithmetic operation is

analogous.

In what follows we assume that there is a global variable overflow initially
set to false in which the Boolean formula expressing a possible over�ow is

computed.

Let ∼ be a two argument arithmetic relation. We say that a two argument

operation ST : BVn ×BVn −→ F faithfully encodes the relation ∼ if and only

if for every x, y ∈ BVn and every v ∈ Val,

hv(x ST y) = 1 ⇐⇒ Iv(x) ∼ Iv(y).

3.1. Encoding of the relation �equal to�

In order to �nd a Boolean formula that faithfully encodes the equality re-

lation assume that v is an arbitrary but �xed valuation, and observe that

Iv(x) = Iv(y) i� hv
(
∀n−1

j=0 (xj ≡ yj)
)

= 1. Thus, Algorithm 1 constructs

a Boolean formula Equal(x, y) that is the conjunction of all the formulae of

the form xj ≡ yj.

Algorithm 1 Equal

Input: Boolean vectors x, y of length n.
Output: A Boolean formula f such that ∀v ∈ Val, Iv(f) = 1 ⇐⇒ Iv(x) =

Iv(y).
1: function Equal(x, y)
2: f← true
3: for j ← 0 to n− 1 do
4: f← f ∧ (x[j] ≡ y[j])
5: end for

6: return f
7: end function

3.2. Addition

To de�ne the addition of two Boolean vectors we adapt the method of

the addition of two bit vectors known from computer arithmetic. Let x, y
be two Boolean vectors of length n, i.e. let x = 〈xn−1, . . . , x0〉 and

y = 〈yn−1, . . . , y0〉, where for every 0 ≤ k < n, xk and yk are Boolean

formulae. De�ne an ordered pair of Boolean vectors 〈w, c〉 ∈ BVn ×BVn+1 as

follows: �rst, let c0 = 0; next, for 0 ≤ k < n, let

〈wk, ck+1〉 = 〈xk ⊕ yk ⊕ ck, (xk ∧ yk) ∨ (xk ∧ ck) ∨ (yk ∧ ck)〉 .

A Boolean encoding of arithmetic operations 181

The vector w represents the sum of x and y, and the vector c represents the

succeeding carry bits. Clearly, the sum of two bit vectors of length n may not

�t into n bits. By (1), this happens if and only if the sum is less than −2n
or greater than 2n − 1. It is known from computer arithmetic that adding

two integers cause an over�ow exactly when the carry bits cn and cn+1 are

di�erent.

Algorithm 2 Add

Input: Boolean vectors x, y of length n.
Output: A Boolean vector w of length n such that ∀ v ∈ V al, if −2n−1 ≤

Iv(x) + Iv(y) ≤ 2n−1 − 1, then Iv(w) = Iv(x) + Iv(y).
1: function Add(x, y)
2: c[0]← false
3: for k ← 0 to n− 1 do
4: w[k]← x[k] ⊕ y[k] ⊕ c[k]
5: c[k + 1]← (x[k] ∧ y[k]) ∨ (x[k] ∧ c[k]) ∨ (y[k] ∧ c[k])
6: end for

7: overflow← overflow ∨ (c[n] ⊕ c[n+ 1])
8: return w
9: end function

3.3. Subtraction

Notice that in order to subtract two integers it is enough to add to the �rst

number the additive inverse of the second number. Therefore, we need an

operation on Boolean vectors that encodes additive inverse.

Recall that computing additive inverse for a two's complement number

involves complementing each bit and then adding 1. It follows that we need

an operation for creating a Boolean vector that represents the number 1. It

is obvious that the number 1 is represented by the Boolean vector of the form

〈false, . . . ,false, true〉, and an algorithm for creating this vector is trivial.

Nevertheless, it will be useful to provide a more general Algorithm 3 that for

a given integer creates a Boolean vector representing that number.

In this algorithm we use the operation >> of arithmetic right shift also

known as signed shift. Recall that in Java the operator >> designates signed

shift, whereas in C++ a meaning of the operator >> is implementation-de�ned.

Note that in gcc compiler, i.e the compiler we use, the operator >> is imple-

mented as signed shift. In order to ensure that an implementation of Algo-

rithm 3 in the language C++ is independent of an used compiler, one should

use a proper implementation of signed shift instead of the operator >>. Now

182 Andrzej Zbrzezny

Algorithm 3 BoolVec

Input: A number of bits n and an integer a.
Output: A Boolean vector w of length n such that ∀v ∈ Val, if −2n− 1 ≤

a ≤ 2n−1 − 1, then Iv(w) = a.
1: function BoolVec(n, a)

2: if a < 0 then
3: w[n− 1]← true
4: else

5: w[n− 1]← false
6: end if

7: for k ← 0 to n− 2 do
8: if amod 2 = 0 then
9: w[k]← false

10: else

11: w[k]← true
12: end if

13: a← a >> 1
14: end for

15: overflow← overflow ∨ (a �= 0 ∧ a �= −1)
16: return w
17: end function

we are able to write down an algorithm that computes the additive inverse of

a Boolean vector x, also called the opposite of x.

Note that in two's complement arithmetic adding the number 1 to a n-bit
number b generates over�ow if and only if b = 2n−1. As the two's complement

representation of the number 2n − 1 is of the form 〈0, 1, . . . , 1〉, which is the

result of complementing each bit in the vector 〈1, 0, . . . , 0〉 that represents the
number −2n−1, it follows that taking additive inverse of a given number a
generates over�ow exactly when a = −2n−1.

In the algorithm for subtracting we need some auxiliary operations on

Boolean vectors.

For a given Boolean vector x of length n and an integer m ≥ n, the auxiliary
operation Extend implemented in Algorithm 5 creates a Boolean vector w of

length m that represents the same integers as the vector x. This is done by

copying all the elements of x to the corresponding elements of y and then

copying the sign bit of x to the most signi�cant m − n elements of y. The

algorithm described re�ects the known operation of extension that consists

in increasing the number of bits of a binary number while preserving the

number's sign and value. For example, if 8 bits are used to represent the value

A Boolean encoding of arithmetic operations 183

Algorithm 4 Opp

Input: A Boolean vector x of length n.
Output: A Boolean vector w of length n such that ∀v ∈ Val, if −2n−1 <

Iv(x) ≤ 2n−1 − 1, then Iv(w) = −Iv(x).
1: function Opp(x)
2: for k ← 0 to n− 1 do
3: w[k]← ¬x[k]
4: end for

5: w← Add(w,BoolVec(n, 1))
6: return w
7: end function

Algorithm 5 Extend

Input: A Boolean vector x of length n and a positive number m ≥ n.
Output: A Boolean vector w of length m such that ∀v ∈ Val, Iv(w) = Iv(x).
1: function Extend(x, m)

2: for k ← 0 to n− 1 do
3: w[k]← x[k]
4: end for

5: for k ← n to m− 1 do
6: w[k]← x[n− 1]
7: end for

8: return w
9: end function

−15 using two's complement 〈1, 1, 1, 1, 0, 0, 0, 1〉, and sign extend to 16 bits is

used, the new representation would be 〈1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1〉.
For a given Boolean vector x of length m, the auxiliary operation Reduce

implemented in Algorithm 6 creates a Boolean vector w of length n ≤ m such

that every integer represented by the Boolean w is also represented by the

Boolean vector x.

Now we are in a position to write down an algorithm for subtraction of

two Boolean vectors representing integer numbers. At the beginning the

algorithm enlarges both the arguments by one bit in order to avoid a pos-

sible over�ow that may occur in the operation of taking the additive inverse.

Then the algorithm adds the enlarged �rst argument to the additive inverse

of the enlarged second argument and puts the result in an auxiliary Boolean

vector w. Eventually, the over�ow is computed and as the result of subtraction

the algorithm returns the Boolean vector Reduce(w, n).

184 Andrzej Zbrzezny

Algorithm 6 Reduce

Input: A Boolean vector x of length m and a positive number n ≤ m.

Output: A Boolean vector w of length n such that ∀v ∈ Val, if−2n ≤ Iv(x) ≤
2n − 1, then Iv(w) = Iv(x).

1: function Reduce(x, n)
2: for k ← 0 to n− 2 do
3: w[k]← x[k]
4: end for

5: w[n− 1]← x[n− 1]
6: return w
7: end function

Algorithm 7 Subtract

Input: Boolean vectors x, y of length n.
Output: A Boolean vector w of length n such that ∀v ∈ Val, if −2n−1 ≤

Iv(x)− Iv(y) ≤ 2n−1 − 1, then Iv(w) = Iv(x)− Iv(y).
1: function Subtract(x, y)
2: p← Extend(x, n+ 1); q← Extend(y, n+ 1)
3: w← Add(p, Opp(q))
4: overflow← overflow ∨ ¬(w[n− 1] ≡ w[n])
5: return Reduce(w, n)
6: end function

3.4. Multiplication

In the algorithm for multiplication we need some additional auxiliary opera-

tions on Boolean vectors, namely, ShiftLeft, Conjunction and Abs.

The auxiliary operation ShiftLeft, which is implemented in Algorithm

8, is the operation of shifting a Boolean vector one bit left, and after shifting,

�lling in the least signi�cant position of the vector with the Boolean formula

false. This operation corresponds to the well known operation called a logical
shift. The operation of shifting is also used in the algorithm for dividing

nonnegative integers.

The operation Conjunction implemented in Algorithm 9 creates the bit-

wise conjunction of a Boolean formula and a Boolean vector. This simple

operation enables simulating a conditional execution in the algorithms of mul-

tiplying and dividing. The reason for this is the following obvious property:

(∀v ∈ Val) Iv(Conjunction(f, x) =

{
0, if Iv(f) = 0
Iv(x), if Iv(f) = 1.

A Boolean encoding of arithmetic operations 185

Algorithm 8 ShiftLeft

Input: A Boolean vector x of length n.
Output: A Boolean vector x logically shifted left by one.

1: procedure ShiftLeft(x)
2: for k ← n− 1 down to 1 do
3: x[k]← x[k − 1]
4: end for

5: x[0]← false
6: end procedure

Algorithm 9 Conjunction

Input: A Boolean formula f and a Boolean vector x of length n.
Output: A Boolean vector w of length n such that for every 0 ≤ k < n,

w[k] = f ∧ x[k].
1: function Conjunction(f , x)
2: for k ← 0 to n− 1 do
3: w[k]← f ∧ x[k]
4: end for

5: return w
6: end function

For a given Boolean vector x of length n, the auxiliary operation Abs

implemented in Algorithm 10 creates a Boolean vector w of length n such that

w represents the absolute value of x.
Now we are in a position to write down the algorithm for multiplication of

two Boolean vectors representing nonnegative integers. Algorithm 11 creates

a Boolean vector that represents the result of multiplication of two Boolean

vectors that represent nonnegative integers. We adapted the simplest method

that computes the product one bit at a time, and is a symbolic version of the

paper-and-pencil method.

Note that at the beginning of the algorithm some preparatory steps are

needed. First, both the arguments are copied to auxiliary variables p and q;
next, the most signi�cant bit of each of the auxiliary variables is set to false;
eventually, both the auxiliary variables are enlarged to size 2 · n, and w is set

to 〈false, . . . ,false〉.
After these preparatory steps, the algorithm proceeds as follows: for every

k from 0 to n− 1 the conjunction of the multiplicand and the kth element of

multiplier is added to w. This last step simulates the conditional addition of

the multiplicand to the product: the multiplicand is added in the kth step if

and only if the kth element of multiplier represents the binary value 1.

186 Andrzej Zbrzezny

Algorithm 10 Abs

Input: A Boolean vector x of length n.
Output: A Boolean vector w of length n such that ∀v ∈ Val, if −2n−1 <

Iv(x) ≤ 2n−1 − 1, then Iv(w) = |Iv(x)|.
1: function Abs(x)
2: y← Opp(x)
3: for k ← 0 to n− 2 do
4: w[k]← (x[n− 1] ∧ y[k]) ∨ (¬x[n− 1] ∧ x[k])
5: end for

6: w[n− 1]← false
7: return w
8: end function

Algorithm 11 MultiplyNonNeg

Input: Boolean vectors x, y of length n
Output: A Boolean vector w of length 2 · n such that ∀v ∈ Val, if Iv(x) ≥ 0

and Iv(y) ≥ 0, then Iv(w) = Iv(x) · Iv(y).
1: function MultiplyNonNeg(x, y)
2: p← x; p[n− 1]← false; p← Extend(p, 2 · n)
3: q← y; q[n− 1]← false; q← Extend(q, 2 · n)
4: w← BoolVec(2 · n, 0)
5: for k ← 0 to n− 2 do
6: w← Add(w, Conjunction(q[k], p)
7: ShiftLeft(p)
8: end for

9: return w
10: end function

The following Algorithm 12 creates a Boolean vector that represents the re-

sult of multiplication of two Boolean vectors that represent signed integers. At

the beginning, the algorithm enlarges both the arguments by one bit. Then,

two cases are considered: the arguments are of the same sign (f0) and the argu-
ments have di�erent signs (f1). In each of the cases the algorithm symbolically

converts the arguments to be nonnegative, does an unsigned multiplication,

and for the case when the original arguments have di�erent signs, negates the

result. Next, from the two symbolic results, named w0 and w1, the �nal result
is created in the following way: for every k such that 0 ≤ k < 2 · (n + 1),
the kth bit of the product is set to f0 ∧ w0[k] ∨ f1 ∧ w1[k]. Eventually, the
over�ow is computed and the result is reduced to n bits.

A Boolean encoding of arithmetic operations 187

Algorithm 12 Multiply

Input: Boolean vectors x, y of length n
Output: A Boolean vector w of length n such that ∀v ∈ Val, if −2n−1 ≤

Iv(x) · Iv(y) ≤ 2n−1 − 1, then Iv(w) = Iv(x) · Iv(y).
1: function Multiply(x, y)
2: p← Extend(x, n+ 1); q← Extend(y, n+ 1)
3: w0 ←MultiplyNonNeg(Abs(p), Abs(q))
4: w1 ← Opp(w0)
5: f0 ← (¬x[n− 1] ∧ ¬y[n− 1]) ∨ (x[n− 1] ∧ y[n− 1])
6: f1 ← (¬x[n− 1] ∧ y[n− 1]) ∨ (x[n − 1] ∧ ¬y[n− 1])
7: m← 2 · (n+ 1)
8: for k ← 0 to m− 1 do
9: w[k]← f0 ∧ w0[k] ∨ f1 ∧ w1[k]

10: end for

11: of ← false
12: for k ← n− 1 to m− 2 do
13: of← of ∨ ¬(w[k] ≡ w[m− 1)
14: end for

15: overflow← overflow ∨ of
16: return Reduce(w, n)
17: end function

3.5. Division

There are many possible algorithms for dividing nonnegative integers. We

adapted the so called restoring radix-2 division algorithm described in

Appendix H of [3]. Algorithm 13 is done by shifts, subtractions, additions

and testing whether the number is negative. The algorithm needs four regis-

ters: one for the dividend x, one for the divisor y, one for the quotient q, and
one for the remainder r. The registers r and q form a double-length register

pair. The register q is initially set to the value of x and the register q is

initially set to 0.

Algorithm 14 creates a Boolean vector that represents the result of division

of two Boolean vectors that represent signed integers. There are the same cases

to consider for arguments as in Algorithm 12. Also the method of computing

the �nal result is nearly the same. There are only two di�erences. The �rst

one is that the result is not reduced to the length of arguments, as in all the

cases considered the results are of length n. The second one is the method of

setting the over�ow.

188 Andrzej Zbrzezny

Algorithm 13 DivideNonNeg

Input: Boolean vectors x, y of length n
Output: Boolean vectors r, q such that ∀v ∈ Val, if Iv(x) ≥ 0 and Iv(y) > 0,

then Iv(x) = Iv(q) · Iv(y) + Iv(r).
1: function DivideNonNeg(x, y)
2: q← x; r← BoolVec(n, 0)
3: for k ← 0 to n− 1 do
4: ShiftLeft(r)
5: r[0]← q[n− 1]
6: ShiftLeft(q)
7: r← Subtract(r, y)
8: q[0]← ¬r[n− 1]
9: r← Add(r,Conjunction(r[n− 1], y))

10: end for

11: return 〈q, r〉
12: end function

We would also point out that the signs of the quotient and of the remainder

for negative dividends and/or negatives divisors are computed in accordance

with the following rules of C++ and Java: the quotient is negative if and only

if both the dividend and the divisor have di�erent signs, and the remainder is

negative if and only if the dividend is negative.

3.6. Encoding of the relation �less than�

Let us note that the relation �less than� can be encoded by using the operation

of subtraction. The algorithm enlarges both the arguments by one bit in order

to avoid a possible over�ow that may occur in the operation of subtraction and

then returns the most signi�cant element of the Boolean vector representing

the di�erence.

4. Implementation

We have implemented the described algorithms in the programming language

C++ by designing the following classes: the class BoolForm that implements

basic logical operations on Boolean formulae; the class BoolFormVect that im-

plements basic operations on Boolean vectors; and the class Integer, derived

from BoolFormVect, that implements the Boolean encoding of arithmetic re-

lations and operations as described in this paper.

A Boolean encoding of arithmetic operations 189

Algorithm 14 Divide

Input: Boolean vectors x, y of length n
Output: Boolean vectors q, r such that ∀v ∈ Val, if Iv(y) �= 0, then

Iv(x) = Iv(q) · Iv(y) + Iv(r), sgn(Iv(q)) = sgn(Iv(x)) · sgn(Iv(y)), and
sgn(Iv(r)) = sgn(Iv(x)).

1: function Divide(x, y)
2: p← Extend(x, n+ 1); q← Extend(y, n+ 1)
3: 〈q0, r0〉 ← DivideNonNeg(Abs(p), Abs(q))
4: q1 ← Opp(q0); r1 ← Opp(r0)
5: f00 ← ¬x[n− 1] ∧ ¬y[n− 1]); f01 ← ¬x[n− 1] ∧ y[n− 1])
6: f10 ← x[n− 1] ∧ ¬y[n− 1]); f11 ← x[n− 1] ∧ y[n− 1])
7: for k ← 0 to n do
8: q[k]← ((f00 ∨ f11) ∧ q0[k]) ∨ ((f01 ∨ f10) ∧ q1[k])
9: r[k]← ((f00 ∨ f01) ∧ r0[k]) ∨ ((f10 ∨ f11) ∧ r1[k])

10: end for

11: a← BoolVec(n+ 1, 0)
12: b← BoolVec(n+ 1, 1)
13: z← BoolVec(n+ 1, 2n−1)
14: of← Equal(p, Opp(z)) ∧ Equal(q, Opp(b)) ∨ Equal(y, a)
15: overflow← overflow ∨ of
16: return 〈q, r〉
17: end function

In order to test the above algorithms we have created testing programs

for all the arithmetic operations considered. In every program some suitable

formula ϕ is tested in the following way: at �rst, ϕ is converted to a set of

clauses C in a way such that although the set C is not logically equivalent

to the formula ϕ, it preserves satis�ability, i.e. C is satis�able if and only if

ϕ is satis�able; then, we check satis�ability of C by using MiniSat. Some of

experimental results for the programs mentioned above are provided in [8].

5. Final remarks

As a result of implementing our Boolean encoding of arithmetic operations we

were able to extend the module BMC4TADD of the model checker Verics [4] in or-

der to include multiplication and division in the set of the allowed operations.

The module BMC4TADD serves for veri�cation of properties of timed automata

with discrete data. The formalism of timed automata with discrete data

and basic arithmetic operations is now used in veri�cation of Java programs

(see [6, 10]). The Boolean encoding of arithmetic operations was also used in

a new approach to model checking of systems speci�ed in UML (see [5]).

190 Andrzej Zbrzezny

References

[1] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, P. Hawkins. The

Saturn program analysis system. Technical Report, Stanford University,

2006.

[2] R. Brummayer, A. Biere. C32SAT: Checking C expressions. In: Proc.

CAV`2007, LNCS 4590, pp. 294�297, Springer, Berlin, 2007.

[3] J.L. Hennessy, D.A. Patterson. Computer Architecture: A Quantitative

Approach, 3rd edition. Morgan Kaufmann Publishers, San Francisco,

CA, 2003.

[4] M. Kacprzak, W. Nabiaªek, A. Niewiadomski, W. Penczek, A. Pólrola,

M. Szreter, B. Wo¹na, A. Zbrzezny. VerICS 2007 - a model checker for

knowledge and real-time. Fund. Informaticae, 85 (1-4), 313�328, 2008.

[5] A. Niewiadomski, W. Penczek, M. Szreter. A new approach to model

checking of UML state machines. Fund. Informaticae, 93 (1-3), 289�

303, 2009.

[6] A. Rataj, B. Wo¹na, A. Zbrzezny. A translator of Java programs to

TADDs. Fund. Informaticae, 93 (1-3), 305�324, 2009.

[7] Y. Xie, A. Aiken. Saturn: A SAT-based tool for bug detection. In:

Proc. CAV`2005, LNCS 3576, pp. 139�143. Springer, Berlin, 2005.

[8] A. Zbrzezny. A boolean encoding of arithmetic operations. Technical

Report 999, ICS PAS, 2007.

[9] A. Zbrzezny, A. Pólrola. SAT-based reachability checking for timed

automata with discrete data. Fund. Informaticae, 79 (3�4), 579�593,

2007.

[10] A. Zbrzezny, B. Wo¹na. Towards veri�cation of Java programs in Ver-

ICS. Fund. Informaticae, 85 (1-4), 533�548, 2008.

