Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Technological innovation for re-identifying maritime vessels plays a crucial role in both smart shipping technologies and the pictorial observation tasks necessary for marine recon- naissance. Vessels are vulnerable to varying gradations of engaging in the marine environment, which is complicated and dynamic compared to the conditions on land. Fewer picture samples along with considerable similarity are characteristics of warships as a class of ship, making it more challenging to recover the identities of warships at sea. Consequently, a convolutional dynamic alignment network (CoDA-Net) re-identification framework is proposed in this research. To help the network understand the warships within the desired domain and increase its ability to identify warships, a variety of ships are employed as origin information. Simulating and testing the winning of war vessels at sea helps to increase the network’s ability to recognize complexity so that users can better handle the effects of challenging maritime environments. The impact of various types of ships as transfer items is also highlighted. The research results demonstrate that the enhanced algorithm increases the overall first hit rate (Rank1) by approximately 5.9%; it also increases the mean average accuracy (mAP) by approximately 10.7% and the correlation coefficient by 0.997%.
Czasopismo
Rocznik
Tom
Strony
64--76
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Department of Computer Science and Engineering (Cyber Security), Haldia Institute of Technology, Haldia,
- Purba Midnapur-721657, West Bengal, India
autor
- Gangarampur College, Dakshin Dinajpur, W.B.-733124, India
autor
- Faculty of navigation, Vietnam Maritime University, 484 Lach Tray - Kenh Duong, Le Chan - Hai Phong, Viet Nam
Bibliografia
- 1. G. Zeng, R. Wang, W. Yu, A. Lin, H. Li, and Y. Shang, “A transfer learning-based approach to maritime warships re-identification,” Engineering Applications of Artificial Intelligence, vol. 125, p. 106 696, 2023, ISSN: 0952-1976. DOI: https://doi.org/10.1016/j. engappai.2023.106696. [Online]. Available: https://www.sciencedirect. com/science/article/pii/S0952197623008801.
- 2. M. Bo¨hle, M. Fritz, and B. Schiele, “Convolutional dynamic alignment networks for inter- pretable classifications,” pp. 10 024–10 033, 2021. DOI: 10.1109/CVPR46437.2021. 00990.
- 3. D. Prasad, D. Rajan, L. Rachmawati, E. Rajabaly, and C. Quek, “Video processing from electro-optical sensors for object detection and tracking in a Maritime environment: A survey,” IEEE Transactions on Intelligent Transportation Systems, vol. PP, Nov. 2016. DOI: 10.1109/TITS.2016.2634580.
- 4. J. Cheng, R. Wang, A. Lin, D. Jiang, and Y. Wang, “A feature enhanced RetinaNet − based for instance-level ship recognition,” Engineering Applications of Artificial Intelli- gence, vol. 126, p. 107 133, Nov. 2023. DOI: 10.1016/j.engappai.2023.107133.
- 5. Q. Yu, A. Teixeira, K. Liu, and C. Guedes Soares, “Framework and application of multi- criteria ship collision risk assessment,” Ocean Engineering, vol. 250, p. 111 006, 2022, ISSN: 0029-8018. DOI: https:// doi. org/ 10. 1016/ j.oceaneng. 2022. 111006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0029801822004309.
- 6. F. Farahnakian, L. Zelioli, and J. Heikkonen, “Transfer learning for maritime vessel detec- tion using deep Neural networks,” pp. 1–6, 2021. DOI: 10.1109/ITSC48978.2021.9565077.
- 7. D. K. Prasad, C. K. Prasath, D. Rajan, L. Rachmawati, E. Rajabaly, and C. Quek, “Challenges in video based object detection in maritime scenario using computer vision,” arXiv preprint arXiv:1608.01079, 2016.
- 8. R. Zhang, S. Li, G. Ji, X. Zhao, J. Li, and M. Pan, “Survey on deep learning-based marine object detection,” Journal of Advanced Transportation, vol. 2021, pp. 1–18, Nov. 2021. DOI: 10.1155/2021/5808206.
- 9. D. Qiao, G. Liu, T. Lv, W. Li, and J. Zhang, “Marine vision-based situational awareness using discriminative deep learning: A survey,” Journal of Marine Science and Engineering, vol. 9, no. 4, p. 397, 2021.
- 10. J. Rodrigues, P. Cardoso, J. Monteiro, et al., Computational Science – ICCS 2019 19th International Conference, Faro, Portugal, June 12–14, 2019, Proceedings, Part III: 19th International Conference, Faro, Portugal, June 12–14, 2019, Proceedings, Part III. Jan. 2019, ISBN: 978-3-030-22743-2. DOI: 10.1007/978-3-030-22744-9.
- 11. D. Qiao, G. Liu, F. Dong, S.-X. Jiang, and L. Dai, “Marine vessel re-identification: A large- scale dataset and globaland-local fusion-based discriminative feature learning,”IEEE Ac- cess, vol. 8, pp. 27 744–27 756, 2020.
- 12. D. Qiao, G. Liu, J. Zhang, Q. Zhang, G. Wu, and F. Dong, “M 3c: Multimodel-and-multicue- based tracking by detection of surrounding vessels in maritime environment for USV,” Electronics, vol. 8, no. 7, p. 723, 2019.
- 13. M. Er, Y. Zhang, J. Chen, and W. Gao, “Ship detection with deep learning: A survey,” Artificial Intelligence Review, vol. 56, pp. 1–41, Mar. 2023. DOI: 10.1007/s10462- 023-10455-x.
- 14. P. Spagnolo, F. Filieri, C. Distante, P. L. Mazzeo, and P. D’Ambrosio, “A new annotated dataset for boat detection and re-identification,” pp. 1–7, Sep. 2019. DOI: 10. 1109 /AVSS.2019.8909831.
- 15. H. Luo, W. Jiang, X. Zhang, X. Fan, J. Qian, and C. Zhang, “AlignedReID + +: Dy- namically matching local information for person re-identification,” Pattern Recognition, vol. 94, pp. 53–61, 2019, ISSN: 0031-3203. DOI: https: / / doi. org / 10. 1016 / j. patcog.2019.05.028. [Online]. Available: https://www.sciencedirect. com/science/article/pii/S0031320319302031.
- 16. H. Wang, H. Du, Y. Zhao, and J. Yan, “A comprehensive overview of person re-identification approaches,” IEEE Access, vol. PP, pp. 1–1, Mar. 2020. DOI: 10.1109/ACCESS.2020. 2978344.
- 17. B. Sun, Y. Ren, and X. Lu, “Semisupervised consistent projection metric learning for person reidentification,”IEEE Transactions on Cybernetics, vol. PP, pp. 1–10, Apr. 2020. DOI: 10.1109/TCYB.2020.2979262.
- 18. N. Martinel, M. Dunnhofer, R. Pucci, G. Foresti, and C. Micheloni, “Lord of the rings: Hanoi pooling and self-knowledge distillation for fast and accurate vehicle re-identification,” IEEE Transactions on Industrial Informatics, vol. PP, pp. 1–1, Mar. 2021. DOI: 10.1109/TII. 2021.3068927.
- 19. X. Liu, S. Zhang, X. Wang, R. Hong, and Q. Tian, “Groupgroup loss-based global-regional feature learning for vehicle re-identification,” IEEE Transactions on Image Processing, vol. 29, pp. 2638–2652, 2019.
- 20. B. Brabandere, X. Jia, T. Tuytelaars, and L. Van Gool, “Dynamic filter networks,” Neural Information Processing Systems (NIPS), Jan. 2016.
- 21. S. He, H. Luo, P. Wang, F. Wang, H. Li, and W. Jiang, “TransReID: Transformer-based object re-identification,”2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14 993–15 002, 2021. https://api.semanticscholar.org/CorpusID:231846818.
- 22. T. Wang, H. Liu, W. Li, M. Ban, T. Guo, and Y. Li, Feature completion transformer for occluded person re-identification, Mar. 2023. DOI: 10.48550/arXiv.2303.01656.
- 23. Y. Wu, W. Yang, and M. Wang, “Unsupervised person re-identification with attention-guided fine-grained features and symmetric contrast learning,” Sensors, vol. 22, no. 18, 2022, ISSN: 1424-8220. [Online]. Available: https://www.mdpi.com/1424-8220/22/18/ 6978.
- 24. X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool, “Dynamic filter networks,” in 25. Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg,
- 26. Guyon, and R. Garnett, Eds., vol. 29, Curran Associates, Inc., 2016. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2016/file/8bf1211fd4b7b94528899de0a43b9fb3-Paper.pdf.
- 27. D. K. Jana, S. Roy, P. Dey, and B. Bej, “Utilization of a linguistic response surface method- ology to the business strategy of polypropylene in an Indian petrochemical plant,” Cleaner Chemical Engineering, vol. 2, p. 100 010, 2022, ISSN: 2772-7823. DOI: https://doi. org / 10.1016 / j.clce .2022. 100010.
- 28. S. Roy, D.-P. Vuong, and D. K. Jana, “Priority-aware scheduling method based on linguis- tic interval type 2 fuzzy logic systems for dense industrial iot networks employing soft computing,” Results in Control and Optimization, vol. 14, p. 100 391, 2024, ISSN: 2666- 7207. DOI:https://doi.org/10.1016/j.rico.2024.100391.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-052787bb-dbcd-4349-ad92-09fb2990ec3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.