PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Investigation of alterations in droughts and floods patterns induced by climate change

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Every year, droughts and floods cause significant damage to the economy and water resources of the UK. Numerous studies have been explored droughts and floods from various points of view, however few have pointed the variations in the patterns induced by climate change. The precipitation data of Central England in the UK was gathered from 1931 to 2020. The analysis was performed by application of fractal dimension, noise variance, Lyapunov exponent, approximate entropy, extreme climate indices, and Standard Precipitation Index. The cross-correlation results indicated the study area warming owing to CO2 emissions on a global and local scale, implicating the climate change in the study area. Moreover, the mean maximum and minimum temperatures were affected by CO2 emissions on global and local scales, respectively. The nonlinear dynamic analysis indicated that the duration and intensity of the dry and wet spells were increased due to climate change. In other words, the droughts’ intensity and duration were augmented. However, the number of annual droughts and wetness’s have remained unaffected by climate change. The results signified a weakening in the flash floods possibility and an increment in the flash floods severity owing to climate change. Moreover, climate change brought about an intensification in the rivers’ inundation (fluvial floods) probability. The findings of the present study contribute to the understanding of the mechanism of climate change impacts on droughts and floods (flash, pluvial, and fluvial) patterns and furnished references for nonlinear dynamic studies of droughts and floods patterns.
Czasopismo
Rocznik
Strony
405--418
Opis fizyczny
Bibliogr. 62 poz.
Twórcy
  • Department of Civil Engineering, Marvdasht Branch Islamic Azad University, Marvdasht, Iran
  • Department of Civil Engineering, Marvdasht Branch Islamic Azad University, Marvdasht, Iran
Bibliografia
  • 1. Adarsh S, Dharan DS, Nandhu AR et al (2020) Multifractal description of streamflow and suspended sediment concentration data from Indian river basins. Acta Geophys 68:519-535. https://doi.org/10. 1007/s11600-020-00407-2
  • 2. Agbazo M, N’Gobi GK, Alamou E, Kounouhewa B, Afouda A (2019) Detection of hydrological impacts of climate change in Benin by a multifractal approach. Int J Water Resour Environ Eng 11(2):45-55. https://doi.org/10.5897/IJWREE2018.0819
  • 3. Alexander LV, Jones PD (2001) Updated precipitation series for the U.K. and discussion of recent extremes. Atmos Sci Lett. https:// doi.org/10.1006/asle.2001.0025
  • 4. Anaraki MV, Farzin S, Mousavi SF et al (2021) Uncertainty analysis of climate change impacts on flood frequency by using hybrid machine learning methods. Water Resour Manag 35:199-223. https://doi.org/10.1007/s11269-020-02719-w
  • 5. Anglian (2013) Water, water everywhere? Encouraging collaborating and building partnerships. Water and University of Cambridge. https://www.cisl.cam.ac.uk/businessaction/business-nature/natur al-capital-impact-group/pdfs/waterwater-everywhere-scroll.pdf. Accessed 4 Nov 2020
  • 6. Arnell NW, Freeman A (2021) The effect of climate change on agro-climatic indicators in the UK. Clim Change 165(1):1-26. https:// doi.org/10.1007/s10584-021-03054-8
  • 7. Ascott MJ, Bloomfield JP, Karapanos I, Jackson CR, Ward RS, McBride AB, Dobson B, Kieboom N, Holman IP, Van Loon AF, Crane EJ (2021) Managing groundwater supplies subject to drought: perspectives on current status and future priorities from England (UK). Hydrogeol J 29(3):921-924. https://doi.org/10. 1007/s10040-020-02249-0
  • 8. Averchenkova A, Fankhauser S, Finnegan JJ (2021) The impact of strategic climate legislation: evidence from expert interviews on the UK Climate Change Act. Clim Policy 21(2):251-263. https:// doi.org/10.1080/14693062.2020.1819190
  • 9. Chan WC, Shepherd TG, Smith KA, Darch G, Arnell NW (2021) Storylines of UK drought based on the 2010-2012 event. Hydrol Earth Syst Sci Discuss 17:1-34. https://doi.org/10.5194/hess-2021-123
  • 10. Diaconescu EP, Mailhot A, Brown R, Chaumont D (2018) Evaluation of CORDEX-Arctic daily precipitation and temperature-based climate indices over Canadian Arctic land areas. Clim Dyn 50:20612085. https://doi.org/10.1007/s00382-017-3736-4
  • 11. Doe RK (2004) Extreme precipitation and run-off induced flash flooding at Boscastle, Cornwall, UK, 16 August 2004. J Meteorol 29:319-333
  • 12. Environment Agency (2017) Drought response: our framework for England. www.gov.uk/government/publications
  • 13. Fattahi MH, Talebbeydokhti N, Rakhshandehroo G, Shamsai A, Nikooee E (2011) Fractal assessment of wavelet-based techniques for improving the predictions of the artificial neural network. J Food Agric Environ 9(1):719-724. https://doi.org/10.1234/4.2011.2041
  • 14. Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Wiley, New Yord
  • 15. Gilewski P (2022) Application of global environmental multiscale (GEM) numerical weather prediction (NWP) model for hydrological modeling in mountainous environment. Atmosphere 13(9):1348. https://doi.org/10.3390/atmos13091348
  • 16. Gilewski P, Nawalany M (2018) Inter-comparison of rain-gauge, radar, and satellite (IMERG GPM) precipitation estimates performance for rainfall-runoff modeling in a mountainous catchment in Poland. Water 10(11):1665. https://doi.org/10.3390/w10111665
  • 17. Golding B, Clark P, May B (2005) The Boscastle flood: meteorological analysis of the conditions leading to flooding on 16 August 2004. Weather 60(8):230-235. https://doi.org/10.1256/wea.71.05
  • 18. Grillakis MG (2019) Increase in severe and extreme soil moisture droughts for Europe under climate change. Sci Total Environ 660:1245-1255. https://doi.org/10.1016/j.scitotenv.2019.01.001
  • 19. Haer T, Husby TG, Botzen WJW, Aerts JCJH (2020) The safe development paradox: an agent-based model for flood risk under climate change in the European Union. Glob Environ Change 60:102009. https://doi.org/10.1016/j.gloenvcha.2019.102009
  • 20. Haile GG, Tang Q, Hosseini-Moghari SM, Liu X, Gebremicael TG, Leng G, Kebede A, Xu X, Yun X (2020) Projected impacts of climate change on drought patterns over East Africa. Earth’s Future 8(7):e2020EF001502. https://doi.org/10.1029/2020EF001502
  • 21. Hannah Ritchie H, Roser M, Mathieu E (2022) https://github.com/ owid/co2-data. Accessed 01 Aug 2022
  • 22. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004. https://doi.org/10.1029/2010R G000345
  • 23. Harisuseno D (2020) Meteorological drought and its relationship with southern oscillation index (SOI). Civ Eng J 6(10):1864-1875. https://doi.org/10.28991/cej-2020-03091588
  • 24. Haupt H, Fritsch M (2022) Quantile trend regression and its application to central England temperature. Mathematics 10(3):413. https:// doi.org/10.3390/math10030413
  • 25. Holman IP, Hess TM, Rey D, Knox JW (2021a) A multi-level framework for adaptation to drought within temperate agriculture. Front Environ Sci 8:282. https://doi.org/10.3389/fenvs.2020.589871
  • 26. IPCC (2007) Summary for policymakers, in climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 17
  • 27. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
  • 28. Israelsson J, Charlton-Perez A, Sun T (2022) Impact of climate change on hospital admissions: a case study of the Royal Berkshire Hospital in the UK. Meteorol Appl 29(4):e2084. https://doi.org/10. 1002/met.2084
  • 29. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Bunde A, Havlin S, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316:87. https://doi.org/10. 1016/S0378-4371(02)01383-3
  • 30. Kantz H (1994) A robust method to estimate the maximal Lyapunov exponent of a time series. Phys Lett A 185(1):77-87. https://doi. org/10.1016/0375-9601(94)90991-1
  • 31. Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London
  • 32. Mann HB (1945) Non-parametric tests against trend. Econometrica 13(3):245-259. https://doi.org/10.2307/1907187
  • 33. Marsh TJ (2001) The 2000/2001 floods in the UK — a brief overview.
  • 34. Weather 56:343-345. https://doi.org/1O.1O02/j.1477-8696.2O01. tb06506.x
  • 35. McCarthy M, Christidis N, Dunstone N, Fereday D, Kay G, KleinTank A et al (2019) Drivers of the UK summer heatwave of 2018. Weather 74:390-396. https://doi.org/10.1002/wea.3628
  • 36. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the Eighth Conference on Applied Climatology, American Meteorological Society, pp 179-184
  • 37. Milo§ LR, Hajiegan C, Milo§ MC, Barna FM, Botoc C (2020) Multifractal detrended fluctuation analysis (MF-DFA) of stock market indexes. Empirical evidence from seven central and eastern European markets. Sustainability 12(2):535. https://doi.org/10.3390/ su12020535
  • 38. Panthou G, Vischel T, Lebel T (2014) Recent trends in the regime of extreme rainfall in the Central Sahel. Int J Climatol 34(15):3998-4006. https://doi.org/10.1002/joc.3984
  • 39. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci 88(6):2297-2301. https://doi.org/10. 1073/pnas.88.6.2297
  • 40. Pokhrel Y, Felfelani F, Satoh Y, Boulange J, Burek P, Gädeke A, Gerten D, Gosling SN, Grillakis M, Gudmundsson L, Hanasaki N (2021) Global terrestrial water storage and drought severity under climate change. Nat Clim Change 11(3):226-233. https://doi.org/ 10.1038/s41558-020-00972-w
  • 41. Price K, Purucker ST, Kraemer SR, Babendreier JE, Knightes CD (2014) Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales. Hydrol Process 28(9):3505-3520. https://doi.org/10.1002/hyp.9890
  • 42. R codes (2022). https://github.com/ECCC-CDAS/RClimDex. Accessed 01 Aug 2022
  • 43. Rahmani F, Fattahi MH (2021a) A multifractal cross-correlation investigation into sensitivity and dependence of meteorological and hydrological droughts on precipitation and temperature. Nat Hazards. https://doi.org/10.1007/s11069-021-04916-1
  • 44. Rahmani F, Fattahi MH (2021b) Phase space mapping of pivotal climatic and non-climatic elements affecting basin’ drought. Arab J Geosci 14:397. https://doi.org/10.1007/s12517-021-06734-y
  • 45. Rahmani F, Fattahi MH (2022) Evaluation of nonlinear dynamic patterns of extreme precipitation and temperatures in central England during 1931-2019. J Water Clim Change 13(4):1657-1672. https://doi.org/10.2166/wcc.2022.451
  • 46. Rangarajan G, Sant DA (1997) A climate predictability index and its applications. Geophys Res Lett 24(10):1239-1242. https://doi.org/ 10.1029/97GL01058
  • 47. Sesana E, Gagnon AS, Ciantelli C, Cassar J, Hughes JJ (2021) Climate change impacts on cultural heritage: a literature review. Wiley Interdiscip Rev: Clim Change 12(4):e710. https://doi.org/10.1002/wcc. 710
  • 48. Shi X, Beaulieu C, Killick R, Lund R (2022) Changepoint detection: an analysis of the Central England temperature series. J Clim 35(19):2729-2742. https://arxiv.org/abs/2106.12180
  • 49. Slater LJ, Villarini G (2016) Recent trends in U.S. flood risk. Geophys Res Lett 43(24):12428-12436. https://doi.org/10.1002/2016G L071199
  • 50. Swain DL, Wing OEJ, Bates PD, Done JM, Johnson KA, Cameron DR (2020) Increased flood exposure due to climate change and population growth in the United States. Earth’s Future 8:e2020EF001778. https://doi.org/10.1029/2020EF001778
  • 51. Tabari H (2020) Climate change impact on flood and extreme precipitation increases with water availability. Sci Rep 10:13768. https:// doi.org/10.1038/s41598-020-70816-2
  • 52. Tabari H (2021) Extreme value analysis dilemma for climate change impact assessment on global flood and extreme precipitation. J Hdrol 593:125932. https://doi.org/10.1016/j.jhydrol.2020.125932
  • 53. Tans P (2022). https://gml.noaa.gov/ccgg/trends/data.html. Accessed 01 Aug 2022
  • 54. Tigkas D (2008) Drought characterization and monitoring in regions of Greece. Eur Water 23:29-39
  • 55. Tigkas D, Vangelis H, Tsakiris G (2015) DrinC: a software for drought analysis based on drought indices. Earth Sci Inform 8(3):697-709. https://doi.org/10.1007/s12145-014-0178-y
  • 56. USGCRP ,Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK (2017) Climate science special report: fourth national climate assessment. In: U.S. global change research program. Washington, DC, USA 1:470. https://doi.org/10.7930/J0J964J6
  • 57. Vicente-Serrano SM, McVicar TR, Miralles DG, Yang Y, Tomas-Bur-guera M (2020) Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. Wiley Interdiscip Rev Clim Change 11(2):e632. https://doi.org/10.1002/wcc.632
  • 58. Wang Y, Zhang Q, Singh VP (2016) Spatiotemporal patterns of precipitation regimes in the Huai River basin, China, and possible relations with ENSO events. Nat Hazards 82:2167-2185. https:// doi.org/10.1007/s11069-016-2303-3
  • 59. Wheater HS (2006) Flood hazard and management: a UK perspective.
  • 60. Philos Trans R Soc A 364:2135-2145. https://doi.org/10.1098/ rsta.2006.1817
  • 61. World Weather Attribution (2018). Heatwave in northern Europe, summer 2018. https://www.worldweatherattribution.org/attribution-of-the-2018-heat-in-northern-europe/. Accessed 28 July 2018
  • 62. Zubieta R, Getirana A, Espinoza JC, Lavado W (2015) Impacts of satellite-based precipitation datasets on rainfall-runoff modeling of the Western Amazon basin of Peru and Ecuador. J Hydrol 528:599-612. https://doi.org/10.1016/j.jhydrol.2015.06.064
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0524c154-cdc1-4ee2-86ea-49b44121049e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.