PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A current decomposition-based method for computationally efficient implementation of power resolution meters in non-sinusoidal single-phase systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For non-sinusoidal single-phase systems, the classical apparent power has been divided into various components using different techniques. These power resolutions generally aim at to provide a tool for the accurate determination of the maximum power factor achievable with a passive compensator and to measure the load's nonlinearity degree. This paper presents a current decomposition-based methodology that can be employed for computationally efficient implementation of the widely recognized non-sinusoidal power resolutions. The proposed measurement method and the original expressions of the power resolutions are comparatively evaluated by considering their computational complexity. The results show that the proposed method has a significant advantage in terms of computational efficiency for the simultaneous measurements of the powers when compared with the original expressions. Finally, in this paper, a PC-based power meter is developed using the proposed measurement method via the LabVIEW programme.
Rocznik
Strony
263--274
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wzory
Twórcy
autor
  • Balikesir University, Department of Electrical and Electronics Engineering, Balikesir 10145, Turkey
  • Gebze Institute of Technology, Department of Electronics Engineering, Kocaeli, 41400, Turkey
Bibliografia
  • [1] Budeanu, C. I. (1927). Reactive and Fictitious Powers. Bucuresti: Romanian Nat. Inst.
  • [2] Fryze, S. (1932). Wirk-, Blind, und Scheinleistung in Elektrischen Stromkreisen Mit Nichtsinusoidalformigem Verlauf von Strom und Spannung. Elektrotechnische Zeitschrift, 53 (25), 596-599.
  • [3] Shepherd, W., Zakikhani, P. (1973). Power Factor Correction in Nonsinusoidal Systems by the Use of Capacitance. J. of Phys. D: Appl. Phys., 6, 1850-1861.
  • [4] Sharon, D. (1973). Reactive Power Definition and Power-Factor Improvement in Nonlinear Systems. Proc. Inst. Elec. Eng., 120, 704-706.
  • [5] Kusters, N. L., Moore, W. J. M. (1980). On the Definition of Reactive Power under Nonsinusoidal Conditions. IEEE Trans. on Power Appar. and Syst., 99 (5), 1845-1854.
  • [6] Czarnecki, L. S. (1993). Physical Reasons of Currents RMS Value Increase in Power Systems with Nonsinusoidal Voltage. IEEE Trans. on Power Deliv., 8 (1), 437-447.
  • [7] IEEE Std. 1459-2010 (2010). IEEE Standard Definitions for the Measurement of Electric Power Quantities under Sinusoidal, Non-sinusoidal, Balanced or Unbalanced Conditions.
  • [8] Emanuel, A. E. (1990). Powers in Nonsinusoidal Situations a Review of Definitions and Physical Meaning. IEEE Trans. on Power Deliv., 5 (3), 1377-1389.
  • [9] Czarnecki, L. S. (1990). Comparison of Power Definitions for Circuits with Nonsinusoidal Waveforms. IEEE Tutorial Course 90EH0327-7-PWR, 43-50.
  • [10] Balci, M. E., Hocaoglu, M. H. (2008). Quantitative Comparison of Power Decompositions. Electr. Power Syst. Res., 78 (3), 318-329.
  • [11] Kosobudzki, G., Nawrocki, Z., Nowak, J. (2005). Measure of Electric Reactive Power. Metrol. Meas. Syst., 12 (5), 131-150.
  • [12] Cataliotti, A., Cosentino, V. (2009). A Single-Point Approach Based on IEEE 1459-2000 for the Identification of Detection of Prevailing Harmonic Sources in Distorted Three Phase Power Systems. Metrol. Meas. Syst., 16 (2), 209-219.
  • [13] Balci, M. E., Karacasu, O., Hocaoglu, M. H. (2009). A Detection Method for Harmonic Producing Loads. In Proc. of Eleco 2009 Conference, Bursa, Turkey, I-149- I-153.
  • [14] Gherasim, C., Van den Keybus, J., Driesen, J., Belmans, R. (2004). DSP Implementation of Power Measurements According to the IEEE Trial-Use Standard 1459. IEEE Trans. on Instrum. Meas., 53 (4), 1086.1092.
  • [15] Moreira, A. C., Deckmann, S. M., Marafao, F. P., De Lima, E. G., Bini, M. A. (2005). Virtual Instrumentation Applied to the Implementation of IEEE-STD 1459-2000 Power Definitions. In Proc. ofIEEE PESC 2005, Recife, Brazil, 1712-1718.
  • [16] Orfanos, C. N., Topalis, F. V. (2005). Single-phase Virtual Power and Energy Analyzer in Compliance with IEEE Std 1459.2000 for Harmonic Measurements on Discharge Lamps. In Proc. of IEEE Powertech 2005, St. Petersburg, Russia, 1-6.
  • [17] Cataliotti, A., Cosentino, V., Nuccio, S. (2008). A Virtual Instrument for the Measurement of IEEE Std. 1459-2000 Power Quantities. IEEE Trans. on Instrum. Meas., 57 (1), 85.94.
  • [18] D'Apice, B., Landi, C., Pelvio, A., Rignano, N. (2007). A Multi- DSP Based Instrument for Real-Time Energy and PQ Measurements. Metrol. Meas. Syst., 14 (4), 495-506.
  • [19] Labview8.6 programme. Data sheet for Labview. http://www.ni.com/ (Sept. 2008).
  • [20] Balci, M. E., Hocaoglu, M. H. (2010). A Current resolution for Fast Measurement of Power Resolutions in Non Sinusoidal Single Phase Systems. In Proc. of IEEE ICHQP 2010, Bergamo, Italy, 1-6.
  • [21] Balci, M. E., Hocaoglu, M. H. (2006). New Power Decomposition for Sinusoidal and Nonsinusoidal Conditions. In Proc. of IEEE ICHQP 2006, Cascais, Portugal. CD-ROM.
Uwagi
EN
This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under project number 110E113.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05243010-0d8d-4de1-8bc6-744ca19e415a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.