PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the one-factor CIR interest rate model to catastrophe bond pricing under uncertainty

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The number and amount of losses caused by natural catastrophes are important problems for insurance industry. New financial instruments were introduce to transfer risks from insurance to financial market. In this paper we consider the problem of pricing such instruments, called the catastrophe bonds (CAT bonds). We derive valuation formulas using stochastic analysis and fuzzy sets theory. As model of short interest rate we apply the one-factor Cox–Ingersoll–Ross (CIR) model. In this paper we treat the volatility of the interest rate as a fuzzy number to describe uncertainty of the market. We also apply the Monte Carlo approach to analyze the obtained cat bond fuzzy prices.
Twórcy
autor
  • Systems Research Institute Polish Academy of Sciences, ul.Newelska 6, 01–447 Warszawa, Poland,
autor
  • Systems Research Institute Polish Academy of Sciences, The John Paul II Catholic University of Lublin, ul. Newelska 6, 01–447 Warszawa, Poland
Bibliografia
  • [1] Albrecher H., Hartinger J., Tichy R.F., ”‘QMC techniques for CAT bond pricing”, Monte Carlo Methods Appl., vol. 10, no. 3–4, 2004, 197–211.
  • [2] Baryshnikov Y., Mayo A., Taylor D.R., Pricing CAT Bonds. Working paper, 1998).
  • [3] Borch, K., The Mathematical Theory of Insurance, Lexington Books, Lexington (1974)
  • [4] Buckley J.J., Eslami E., ”Pricing Stock Options Using Fuzzy Sets”, Iranian Journal of Fuzzy Systems, vol. 4, no. 2, 2007, 1–14.
  • [5] Burnecki K., Kukla G., ”Pricing of Zero-Coupon and Coupon CAT Bond”, Applied Mathematics, vol.30, 2003, 315–324.
  • [6] Chen R.-R., Scott L., ”Multi-factor Cox-Ingersoll-Ross Models of the Term Structure: Estimates and Tests from a Kalman Filter Model”, Journal of Real Estate Finance and Economics, vol. 27, no. 2, 2003, 143–172.
  • [7] Chernobai A., Burnecki K., Rachev S., Trueck S., Weron R., ”Modeling catastrophe claims with left-truncated severity distributions”, Computational Statistics, vol. 21, issue 3–4,2006, 537–555. DOI: http://dx.doi.org/10.1007/s00180-006-0011-2.
  • [8] Cox S.H., Fairchild J.R., Pedersen H.W., ”Economic Aspects of Securitization of Risk”, ASTIN Bulletin, vol. 30, no. 1, 2000, 157–193.
  • [9] Cox S.H., Pedersen H.W., ”Catastrophe Risk Bonds”, North American Actuarial Journal , vol. 4, issue 4, 2000, 56–82. DOI: http://dx.doi.org/10.1080/10920277.2000.10595938.
  • [10] Cummins J.D., Doherty N., Lo A., ”Can insurers pay for the ”big one”? Measuring the capacity of insurance market to respond to catastrophic losses”, Journal of Banking and Finance , vol. 26, no. 2–3, 2002, p. 557. DOI: http://dx.doi.org/10.1016/S0378-4266(01)00234-5.
  • [11] Dai Q., Singleton K.J., ”Specifiication analysis of affine term structure models”, Journal of Finance, vol. 55, no. 5, 2000, 1943– 1978. DOI: http://dx.doi.org/10.1111/0022-1082.00278.
  • [12] Duffie D., Kan R., ”A yield-factor model of interest rates”, Mathematical Finance, vol. 6, no. 4,1996, 379–406. DOI: http://dx.doi.org/10.1111/j.1467-9965.1996.tb00123.x.
  • [13] Egami M., Young V.R.:, ”Indifference prices of structured catastrophe (CAT) bonds”, Insurance:Mathematics and Economics, vol. 42, no. 2, 2008,771–778. DOI: http://dx.doi.org/10.1016/j.insmatheco.2007.08.004.
  • [14] Ermolieva T., Romaniuk,. M., Fischer. G.,Makowski. M., ”Integrated model-based decision support for management of weather-related agricultural losses”. In: Enviromental informatics and systems research. Vol. 1: Plenary and session papers - EnviroInfo 2007, ed. by Hryniewicz. O., Studzinski J., Romaniuk M., Shaker Verlag 2007.
  • [15] Freeman P. K., Kunreuther H., Managing Environmental Risk Through Insurance. Kluwer Academic Press, Boston 1997. DOI: http://dx.doi.org/10.1007/978-94-011-5360-7.
  • [16] Fuller R., Majlender P., ”On weighted possibilistic mean and variance of fuzzy numbers”, Fuzzy Sets and Systems, vol. 136, no. 3, 2003,363–274. DOI: http://dx.doi.org/10.1016/S0165-0114(02)00216-6.
  • [17] George J.B., ”Alternative reinsurance: Using catastrophe bonds and insurance derivatives as a mechanism for increasing capacity in the insurance markets”, CPCU Journal, vol. 52, no. 1, 1999, p. 50.
  • [18] Gil-Lafuente A. M., Fuzzy logic in financial analysis,Springer, Berlin 2005.
  • [19] Kowalski P. A., Łukasik S., Charytanowicz M., Kulczycki P., ”Data-Driven Fuzzy Modeling and Control with Kernel Density Based Clustering Technique”, Polish Journal of Environmental Studies,vol. 17, no. 4C, 2008, 83–87.
  • [20] Kulczycki P., Charytanowicz M., ”Bayes sharpening of imprecise information”, International Journal of Applied Mathematics and Computer Science, vol. 15, no. 3, 2005, 393–404.
  • [21] Kulczycki P., Charytanowicz M., ”Asymmetrical Conditional Bayes Parameter Identification for Control Engineering”, Cybernetics and Systems, vol. 39, no. 3, 2008, 229–243.
  • [22] Kulczycki, P., Charytanowicz, M., ”A Complete Gradient Clustering Algorithm Formed with Kernel Estimators”, International Journal of Applied Mathematics and Computer Science, vol. 20, no. 1, 2010, 123–134. DOI: http://dx.doi.org/10.2478/v10006-010-0009-3.
  • [23] Kulczycki P., Charytanowicz M., ”Conditional Parameter Identi􀏐ication with Different Losses of Under- and Overestimation”, Applied Mathematical Modelling, vol. 37, no. 4, 2013, 2166 – 2177. DOI: http://dx.doi.org/10.1016/j.apm.2012.05.007.
  • [24] Lee J. P., Yu M. T., ”Valuation of catastrophe reinsurance with catastrophe bonds”, Insurance:Mathematics and Economics, vo. 41, no. 2, 2007,264–278. DOI: http://dx.doi.org/10.1016/j.insmatheco.2006.11.003.
  • [25] Lin S. K., Shyu D., Chang C. C., ”Pricing Catastrophe Insurance Products in Markov Jump Diffusion Models”, Journal of Financial Studies, vol. 16, no. 2, 2008, 1–33.
  • [26] Muermann A., ”Market Price of Insurance Risk Implied by Catastrophe Derivatives”, North American Actuarial Journal, vol. 12, no. 3, 2008,221–227. DOI: http://dx.doi.org/10.1080/10920277.2008.10597518.
  • [27] Munk C., Fixed Income Modelling, Oxford University Press 2011. DOI: http://dx.doi.org/10.1093/acprof:oso/9780199575084.001.0001.
  • [28] Nowak P., ”Analysis of applications of some exante instruments for the transfer of catastrophic risks”. In: IIASA Interim Report I IR-99-075,1999.
  • [29] Nowak P., ”On Jacod-Grigelionis characteristics for Hilbert space valued semimartingales”, Stochastic Analysis and Applications, vol. 20, no.5, 2002, 963–998. DOI: http://dx.doi.org/10.1081/SAP-120014551.
  • [30] Nowak P., Romaniuk M., ”Computing option price for Levy process with fuzzy parameters”, European Journal of Operational Research, vol. 201, no. 1, 2010, 206–210. DOI: http://dx.doi.org/10.1016/j.ejor.2009.02.009.
  • [31] Nowak P., Romaniuk M., Ermolieva T., ”Evaluation of Portfolio of Financial and Insurance Instruments: Simulation of Uncertainty”. In: Managing Safety of Heterogeneous Systems: Decisions under Uncertainties and Risks, ed. by Ermoliev Y., Makowski M., Marti K., Springer-Verlag Berlin Heidelberg 2012.
  • [32] Nowak P., Romaniuk M., Application of the onefactor affine interest rate models to catastrophe bonds pricing. Research Report, RB/1/2013, SRI PAS, Warsaw 2013.
  • [33] Nowak P., Romaniuk M., ”Pricing and simulations of catastrophe bonds”, Insurance: Mathematics and Economics, vol. 52, no. 1, 2013,18–28. DOI: http://dx.doi.org/10.1016/j.insmatheco.2012.10.006.
  • [34] Nowak P., Romaniuk M., ”A fuzzy approach to option pricing in a Levy process setting”, Int. J. Appl. Math. Comput. Sci., vol. 23, no. 3, 2013, 613–622. DOI: http://dx.doi.org/10.2478/amcs-2013-0046.
  • [35] Nowak P., Romaniuk M.:, ”Application of Levy processes and Esscher transformed martingale measures for option pricing in fuzzy framework”, Journal of Computational and Applied Mathematics, vol. 263, 2014, 129–151. DOI: http://dx.doi.org/10.1016/j.cam.2013.11.031.
  • [36] Puri M.L., Ralescu D.A., ”Fuzzy random variables”, Journal of Mathematical Analysis and Applications, vol. 114, no. 2, 1986,409–422. DOI: http://dx.doi.org/10.1016/0022-247X(86)90093-4.
  • [37] Ripples IntoWaves: The Catastrophe Bond Market at Year-End 2006. Guy Carpenter & Company, Inc.and MMC Security Corporation 2007.
  • [38] Romaniuk M., Ermolieva T., ”Application EDGE software and simulations for integrated catastrophe management”, International Journal of Knowledge and Systems Sciences, vol. 2, no. 2, 2005, 1–9.
  • [39] Shiryaev A.N., Essentials of stochastic finance, Facts, Models, Theory, World Scientific 1999. DOI: http://dx.doi.org/10.1142/9789812385192.
  • [40] Vaugirard V.E., ”Pricing catastrophe bonds by an arbitrage approach”, The Quarterly Review of Economics and Finance, vol. 43, no. 1, 2003,119– 132. DOI: http://dx.doi.org/10.1016/S1062-9769(02)00158-8.
  • [41] Walker G., ”Current Developments in Catastrophe Modelling”. In: Financial Risks Management for Natural Catastrophes, ed. by Britton, N. R., Olliver, J. Brisbane, Griffith University, Australia 1997.
  • [42] Wu H.-Ch., ”Pricing European options based on the fuzzy pattern of Black-Scholes formula”, Computers & Operations Research, vol. 31, no. 7, 2004, 1069–1081. DOI: http://dx.doi.org/10.1016/S0305-0548(03)00065-0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0522afab-5c7c-49b3-bec6-6b29128a9f08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.