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Abstract:
The number and amount of losses caused by natural
catastrophes are important problems for insurance in-
dustry. New financial instruments were introduce to
transfer risks from insurance to financial market. In this
paper we consider the problem of pricing such instru-
ments, called the catastrophe bonds (CAT bonds). We
derive valua on formulas using stochas c analysis and
fuzzy sets theory. As model of short interest rate we ap-
ply the one-factor Cox–Ingersoll–Ross (CIR) model. In this
paper we treat the vola lity of the interest rate as a fuzzy
number to describe uncertainty of the market. We also
apply the Monte Carlo approach to analyze the obtained
cat bond fuzzy prices.
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stochas c analysis, Monte Carlo simula ons, fuzzy num-
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1. Introduc on
Nowadays, natural catastrophes are important

source of serious problems for insurers and rein-
surers. Even single catastrophic event could results
in damages worth of billions of dollars – e.g. the
losses from Hurricane Katrina in 2005 are estimated
at $40–60 billion (see [26]). The insurance industry is
not prepared for such extreme damages. The classical
insurance approach is based on assumption of inde-
pendent and small (in comparison of the value of the
whole insurance portfolio) losses (see, e.g. [3]). This
assumption is not adequate in the case of outcomes
of natural catastrophes, like hurricanes, loods, earth-
quakes etc. Therefore, after such catastrophic event,
there are bankruptcies of the insurers, problems with
liquidity of their reserves or increases of reinsurance
premiums. For example, afterHurricaneAndrewmore
than 60 insurance companies fell into insolvency (see
[26]).

Then new kind of inancial instruments were in-
troduced. The main aim of such inancial derivatives
is to transfer risks from insurance markets into inan-
cial markets, which is know as securitization (see, e.g.,
[10,15,28]). Catastrophebond, knownalso as cat bond
or Act-of-God bond (see, e.g., [8, 14,17,31,33,38,40])
is an example of such new approach.

The payment function of the catastrophe bond is
connected with additional random variable, i.e. trig-
gering point. This triggering point (indemnity trigger,
parametric trigger or index trigger) depends on oc-
currence of speci ied catastrophe (like hurricane) in

given region and ixed time interval or it is connected
with the value of issuer’s actual losses from catas-
trophic event (like lood), losses modeled by special
software based on the real parameters of a catastro-
phe, or other parameters of a catastrophe or value of
catastrophic losses (see, e.g. [17,40,41]). Usually if the
triggering point occurs, the payments for the bond-
holder are lowered or even set to zero. Otherwise, the
bondholder receives full payment from the cat bond.

The cat bond pricing literature is not very rich. An
interesting approach applying discrete time stochas-
tic processes within the framework of representative
agent equilibrium was proposed in [9]. In [2] the au-
thors applied compound Poisson processes to incor-
porate various characteristics of the catastrophe pro-
cess. The authors of [5] improved and extended the
method from [2]. In [1] the doubly stochastic com-
pound Poisson process was used to model the claim
index, and QMC algorithms was applied. In [13] struc-
tured cat bonds were valued with application of the
indifference pricing method. Vaugirard in [40] used
the arbitragemethod for pricing catastrophe bonds. In
his approach a catastrophe bondholder was deemed
to have a short position on an option based upon a risk
index. Similar approach was proposed in [25], where
the Markov-modulated Poisson process was used for
description of the arrival rate of natural catastrophes.
In this paper we continue our earlier research con-
cerningpricing cat bonds (see [33]).Weapply stochas-
tic analysis and fuzzy arithmetic to obtain the catas-
trophe bond valuation expression. In our approach
the risk-free spot interest rate r is described by the
Cox–Ingersoll–Ross model. For description of natural
catastrophe losses we use compound Poisson process
with a deterministic intensity function. We also con-
sider a complex form of catastrophe bond payoff func-
tion, which is piecewise linear. Main assumptions in
our approach are: (i) the absence of arbitrage on the
inancial market, (ii) neutral attitude of investors to
catastrophe risk. Similar assumptions were made by
other authors (see, e.g. [40]).

Applying fuzzy arithmetic, we take into account
different sources of uncertainty, not only the stochas-
tic one. In particular, the volatility parameter of the
spot interest rate is determined by luctuating inan-
cialmarket and inmany situations its uncertaintydoes
not have stochastic type. Therefore, in order to ob-
tain the cat bond valuation formula we apply fuzzy
volatility parameter of the stochastic process r. As re-
sult, price obtained by us has the form of a fuzzy num-
ber. For a given α (e.g. α = 0.9) its α-level set can be
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used for investment decision-making as the interval of
the cat bond prices with an acceptable membership
degree. Similar approach was applied to option pric-
ing in [42] and [30, 34, 35], where Jacod-Grigelionis
characteristics of stochastic processes (see, e.g. [29,
39]) were additionally used. In more general setting,
so called soft approaches are applied in many other
ields, see, e.g. [19–23].

This paper is organized as follows. Section 2 con-
tains preliminaries on fuzzy and interval arithmetic.
In Section 3 the catastrophe bond pricing formula in
crisp case for the Cox–Ingersoll–Ross risk-free inter-
est ratemodel is derived. Section 4 is devoted to catas-
trophe bond pricing with fuzzy volatility parameter.
Since the pricing formula is considered for arbitrary
timemoment beforematurity, fuzzy random variables
are additionally introduced. Apart from the fuzzy val-
uation formula, the expressions describing the forms
of α-level sets of the cat bond price are obtained. In
Section 5 the introduced formulas are used to obtain
the fuzzy prices of catastrophe bonds. Based on fuzzy
arithmetic and Monte Carlo approach, the behavior
of prices is analyzed for various settings close to the
real-life cases. Special attention is paid to the in luence
of selected parameters of the model of catastrophic
events on the evaluated fuzzy prices. Finally, Section
6 contains conclusions.

2. Fuzzy Sets Preliminaries
In this section we present basic de initions and

facts concerning fuzzy and interval arithmetic, which
will be used in the further part of the paper.

For a fuzzy subset Ãof the set of real numbersRwe
denote by µÃ its membership function µÃ : R → [0, 1]

and by Ãα = {x : µÃ (x) ≥ α} the α-level set of Ã for
α ∈ (0, 1]. Moreover, by Ã0 we denote the closure of
the set {x : µÃ (x) > 0}.

A fuzzy number ã is a fuzzy subset of R for which
µã is a normal, upper-semicontinuous, fuzzy convex
function with a compact support. If ã is a fuzzy num-
ber, then for each α ∈ [0, 1] the α-level set ãα is
a closed interval of the form ãα = [ãLα, ã

U
α ], where

ãLα, ã
U
α ∈ R and ãLα ≤ ãUα . We denote the set of fuzzy

numbers by F (R).
Let us assume that⊙ is a fuzzy-number binary op-

erator⊕,⊖,⊗ or⊘, corresponding to its real-number
counterpart ◦:+,−,× or /, according to the Extension
Principle.

Let ⊙int be a binary operator ⊕int, ⊖int, ⊗int or
⊘int between twoclosed intervals [a, b] and [c, d]. Then
the following equality holds:

[a, b]⊙int[c, d] = {z ∈ R : z = x◦y, x ∈ [a, b], y ∈ [c, d]},

where ◦ is the corresponding real-number binary op-
erator +,−,× or /, under the assumption that 0 /∈
[c, d] in the last case. Thus, if ã, b̃ are fuzzy numbers,
then ã ⊙ b̃ is also a fuzzy number and the following
equalities are ful illed.

(ã⊕ b̃)α = ãα ⊕int b̃α = [ãLα + b̃Lα, ã
U
α + b̃Uα ] ,

(ã⊖ b̃)α = ãα ⊖int b̃α = [ãLα − b̃Uα , ã
U
α − b̃Lα] ,

(ã⊗ b̃)α = ãα ⊗int b̃α =

= [min{ãLα b̃Lα, ãLα b̃Uα , ãUα b̃Lα, ãUα b̃Uα },
max{ãLα b̃Lα, ãLα b̃Uα , ãUα b̃Lα, ãUα b̃Uα }] ,

(ã⊘ b̃)α = ãα ⊘int b̃α =

= [min{ãLα/b̃Lα, ãLα/b̃Uα , ãUα/b̃Lα, ãUα /b̃Uα },
max{ãLα/b̃Lα, ãLα/b̃Uα , ãUα /b̃Lα, ãUα /b̃Uα }] ,

if α-level set b̃α does not contain zero for all α ∈ [0, 1]
in the case of⊘.

A fuzzy number ã is called positive (ã ≥ 0) if
µã (x) = 0 for x < 0 and it is called strictly positive
(ã > 0) if µã (x) = 0 for x ≤ 0.

A triangular fuzzy number ã = (a1, a2, a3) is a
fuzzy number with the membership function of the
form

µã (x) =


x−a1

a2−a1
if a1 ≤ x ≤ a2

x−a3

a2−a3
if a2 ≤ x ≤ a3

0 otherwise.
.

In our further considerationswewill use the following
proposition, proved in [42].
Proposition 1. Let f : R → R be a function such that
f−1 ({y}) is a compact set for each y ∈ R. Then f in-
duces a fuzzy-valued function f̃ : F (R) → F (R) via the
Extension Principle and for each Λ̃ ∈ F (R) the α-level
set of f̃(Λ̃) has the form f̃(Λ̃)α = {f(x) : x ∈ Λ̃α}.

We recall the notions of weighted interval-valued
and crisp possibilistic mean values of fuzzy numbers.
For details we refer the reader to [16].

Let ã ∈ F (R). A non-negative, monotone increas-
ing function f : [0, 1] 7→ R such that

∫ 1

0
f(α)dα = 1 is

said to be a weighting function. The lower and upper
weighted possibilistic mean valuesM∗(ã) andM∗(ã)
of ã are de ined by the integrals:

M∗(ã) =

∫ 1

0

ãLαf(α)dα,

M∗(ã) =

∫ 1

0

ãUα f(α)dα.

Theweighted interval-valued possibilisticmeanM(ã)
and the crisp weighted possibilistic mean M̄(ã) of the
fuzzy number ã have the following form:

M(ã) = [M∗(ã),M
∗(ã)],

M̄(ã) =
M∗(ã) +M∗(ã)

2
.

Let B (R) be the Borel σ- ield of subsets of R and
(Ω,F) be ameasurable space. A fuzzy-number-valued
map X̃ : Ω 7→ F (R) is called a fuzzy random variable
if {

(ω, x) : X̃ (ω) (x) ≥ α
}
∈ F × B (R)

for every α ∈ [0, 1] (see, e.g. [36]).
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3. Catastrophe Bond Pricing in Crisp Case
As it was previously noted, the triggering point

changes the structure of the payment function of the
cat bond. Usually cat bonds are issued by insurers or
reinsurers (see, e.g., [37]) via a special tailor-made
fund, called a special purpose vehicle (SPV) or spe-
cial purpose company (SPC) (see, e.g., [24, 40]). The
hedger (e.g. insurer or reinsurer) pays an insurance
premium in exchange for coverage in the case if trig-
gering point occurs (see Figure 1). The investors pur-
chase the catastrophe bonds for cash. The premium
and cash lows are directed to SPV, which purchases
safe securities and issues the catastrophe bonds. In-
vestors hold these assets whose payments depend on
occurrence of the triggering point. If the pre-speci ied
event occurs during the ixed period (e.g. there is a
speci ied kind of natural catastrophe), the SPV com-
pensates the insurer and the cash lows for investors
are changed. Usually these lows are lowered, i.e. there
is full or partial forgiveness of the payment. However,
if the triggering point does not occur, the investors
usually receive the full payment (i.e. the face value of
the bond).

Fig. 1. Payments related to issuing and termina ng of
the cat bond

In the further part of this section we derive and
present the pricing formula for catastrophe bonds in
crisp case, assuming no arbitrage opportunity on the
market. At the beginning we introduce all necessary
de initions and assumptions.

We use stochastic processes with continuous time
to describe the dynamics of the spot risk-free interest
rate and the cumulative catastrophe losses. The time
horizon has the form [0, T ′], where T ′ > 0. The date of
maturity of catastrophe bonds T is not later than T ′,
i.e. T ≤ T ′. We consider two probability measures: P
andQ and denote the expected values with respect to
them by the symbolsEP andEQ.

We introduce standard Brownian motion
(Wt)t∈[0,T ′] and Poisson process (Nt)t∈[0,T ′] with
a deterministic intensity function ρ(t), t ∈ [0, T ′]. The
Brownian motion will be used for description of the
risk-free interest rate.

We introduce a sequence (Ui)
∞
i=1 of independent,

identically distributed random variables with inite
secondmoment. For each i the randomvariableUiwill
describe the value of losses during i-th catastrophic
event.

We de ine compound Poisson process by the for-
mula

Ñt =

Nt∑
i=1

Ui, t ∈ [0, T ′] .

for modeling the cumulative catastrophic losses till
moment t.

All the introduced above processes and random
variables are de ined on probability space (Ω,F , P ).
We introduce the following iltrations:

(
F0

t

)
t∈[0,T ′]

,(
F1

t

)
t∈[0,T ′]

and (Ft)t∈[0,T ′].
(
F0

t

)
t∈[0,T ′]

is generated
byW ,

(
F1

t

)
t∈[0,T ′]

by Ñ and (Ft)t∈[0,T ′] byW and Ñ .
Moreover, they are augmented to encompass P -null
sets from F0

T ′ , F1
T ′ and F = FT ′ , respectively.

(Wt)t∈[0,T ′], (Nt)t∈[0,T ′] and (Ui)
∞
i=1 are in-

dependent and the iltered probability space(
Ω,F , (Ft)t∈[0,T ′] , P

)
satis ies usual assumptions:

σ-algebra F is P -complete, the iltration (Ft)t∈[0,T ′]

is right continuous and eachFt contains all the P -null
sets from F .

Let r = (rt)t∈[0,T ′] be the risk-free spot inter-
est rate, i.e. short-term rate for risk-free borrowing
or lending at time t over the in initesimal time inter-
val [t, t+ dt]. We assume that r is an one-factor af ine
model. Formore details concerning af ine interest rate
models we refer the reader to [11] and [12]. The Cox –
Ingersoll – Ross model, considered in this paper, is of
this type.

The risk-free spot interest rate (rt)t∈[0,T ′], belong-
ing to the class of one-factor af ine models, is a diffu-
sion process of the form

drt = α (rt) dt+ σ (rt) dWt, (1)

where

α (r) = φ− κr and σ2 (r) = δ1 + δ2r

for constants φ, κ, δ1, δ2 (see, e.g. [27]). We denote by
S the set of all the valueswhich r can havewith strictly
positive probability. We require that δ1 + δ2r ≥ 0 for
all values r ∈ S .

We assume that zero-coupon bonds are traded on
the market, investors have neutral attitude to catas-
trophe risk and interest rate changes are replica-
ble by other inancial instruments. Moreover, we as-
sume that there is no arbitrage opportunity on the
market. Then the family of zero-coupon bonds prices
is arbitrage-free with respect to r for the probabil-
ity measure Q equivalent to P , given by the Radon-
Nikodym derivative

dQ

dP
= exp

(
−
∫ T

0

λ̄tdWt −
1

2

∫ T

0

λ̄2
tdt

)
, P − a.s.

(2)
where λ̄t = λ0σ (rt) is the market price of risk pro-
cess, λ0 ∈ R. Under Q the process r is described by

drt = α̂ (rt) dt+ σ (rt) dW
Q
t , (3)

where

α̂ (r) = φ̂− κ̂r, φ̂ = φ− λ0δ1, κ̂ = κ+ λ0δ2 (4)
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andWQ
t isQ - Brownian motion.

We ix n ≥ 1, T ∈ [0, T ′] and Fv > 0. Let
K = (K0,K1, ...,Kn) be levels of catastrophic losses,
where

0 ≤ K0 < K1 < K1 < ... < Kn.

Let w = (w1, w2, ..., wn) be a sequence of non-
negative numbers such that their sum is not greater
to 1, i.e.∑n

i=1 wi ≤ 1.

De inition 1. By the symbol IB (T, Fv) we denote
catastrophebondwith the face valueFv, the date ofma-
turity and payoff T and the payoff function of the form

νT,Fv = Fv

1−
n−1∑
j=0

ÑT ∧Kj+1 − ÑT ∧Kj

Kj+1 −Kj
wj+1

 .

For the considered type of catastrophe bond the
payoff function is a piecewise linear function of ÑT .
If the catastrophe does not occur (i.e. ÑT < K0),
the bondholder receives the payoff equal to its face
value Fv. If ÑT ≥ Kn, the payoff is equal to
Fv (1−

∑n
i=1 wi). If Kj ≤ ÑT ≤ Kj+1 for j =

0, 1, ..., n, the bondholder is paid

Fv

1−
∑

0≤i<j

wi+1 −
ÑT ∧Kj+1 − ÑT ∧Kj

Kj+1 −Kj
wj+1


and in the interval [Kj ,Kj+1] the payoff de-
creases linearly from Fv

(
1−

∑
0≤i<j wi+1

)
to

Fv
(
1−

∑
0≤i≤j wi+1

)
as the function of ÑT .

We will use the following general theorem con-
cerning catastrophebondpricing, provedbyus in [32].
Theorem 1. Let (rt)t∈[0,T ′] be a risk-free spot interest
rate given by the diffusion process (1) and such that, af-
ter the change of probability measure described by the
Radon –Nikodymderivative (2), it has the form (3)with
the coef icients given by equalities (4). Let IBT,Fv (t) be
the price at time t, 0 ≤ t ≤ T , of the catastrophe bond
IB (T, Fv). Then

IBT,Fv (t) = η (t, T, rt, Fv) , 0 ≤ t ≤ T, (5)

where

(i)

η (t, T, r, Fv) =

= exp (−a (T − t)− b (T − t) r)EQ
(
νT,Fv|F1

t

)
;
(6)

(ii) functions a (τ) and b (τ) satisfy the following sys-
tem of differential equations:

1

2
δ2b

2 (τ) + κ̂b (τ) + b′ (τ)− 1 = 0, τ > 0,

(7)

a′ (τ)− φ̂b (τ) +
1

2
δ1b

2 (τ) = 0 τ > 0

with a (0) = b (0) = 0.

In particular,

IBT,Fv (0) =η (0, T, r0, Fv)

= exp (−a (T )− b (T ) r0)E
P νT,Fv. (8)

The interest rate process r, applied in this paper,
is the Cox–Ingersoll–Ross model described by the fol-
lowing stochastic equation

drt = κ (θ − rt) dt+ Γ
√
rtdWt (9)

for positive constants κ, θ and Γ. The CIR model is
af ine with parameters φ = κθ, δ1 = 0 and δ2 = Γ2.
Generally, for the considered model, interest rate can-
not become negative (i.e., S = [0,∞)), which is a ma-
jor advantage relative to other models. Moreover, if
its parameters satisfy the inequality 2φ ≥ Γ2, then
S = (0,∞). The CIR model has the property of mean
reversion around the long-term level θ. The parameter
κ controls the size of the expected adjustment towards
θ and is called the speed of adjustment. The volatility
is the product Γ√rt and therefore the interest rate is
less volatile for low values than for high values of the
process rt.

The following theorem is a special case of Theorem
1 for the spot interest rate dynamics described by the
Cox–Ingersoll–Ross model.

Theorem 2. Let the risk-free spot interest rate
(rt)t∈[0,T ′] be described by the CIR model. Assume that
IBT,Fv (t) is the price of the bond IB (T, Fv) at mo-
ment t ∈ [0, T ]. Then

IBT,Fv (t) = ea(T−t)−b(T−t)rtEQ
(
νT,Fv|F1

t

)
, (10)

where
b (τ) =

(eγτ − 1)
(κ̂+γ)

2 (eγτ − 1) + γ
, (11)

a (τ) =
2φ

Γ2

[
ln
(

γ
(κ̂+γ)

2 (eγτ − 1) + γ

)
+

(κ̂+ γ) τ

2

]
,

(12)
κ̂ = κ+ λΓ, γ =

√
κ̂2 + 2Γ2.

In Theorem 2 the constant λ is the product λ =
λ0Γ. Since all the model parameters should be posi-
tive after change of probability measure, we assume
that κ̂ > 0. The equalities (11) and (12) are obtained
as the solution of the system of equations (7). One can
also ind them in inancial literature (see, e.g. [27]),
since they are used in the zero-coupon bond pricing
formula.

4. Catastrophe Bond Pricing in Fuzzy Case
Usually some parameters of the inancial market

are not precisely known. In particular, the volatility
parameter of the spot interest rate is determined by
luctuating inancial market and very often its uncer-
tainty does not have stochastic character. Therefore it
is unreasonable to choose ixed values of parameters,
which areobtained fromhistorical data, for later use in
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pricing model, since they can luctuate in future (see,
e.g. [42]).

To estimate values of uncertain parameters one
can use knowledge of experts, asking them for forecast
of a parameter. The forecasts can be transferred into
triangular fuzzy numbers. Their average can be com-
puted and used for estimation of the parameter. Such
an estimationmethodwasproposed in [4] and [18] for
inancial applications.

In the reminder of this paperwe assumemore gen-
erally that the volatility parameter is a strictly positive
fuzzy number, which is not necessarily triangular. We
denote the fuzzy volatility parameter by Γ̃.

In the following theorem we present catas-
trophe bonds pricing formula for the one-factor
Cox–Ingersoll–Ross interest rate model.
Theorem 3. Assume that IBT,Fv (t) is the price of
bond IB (T, Fv) at moment t ∈ [0, T ] for a strictly pos-
itive fuzzy volatility parameter Γ̃. Then

IBT,Fv (t) = eã(T−t)⊖b̃(T−t)⊗r̃t ⊗ EQ
(
νT,Fv|F1

t

)
,

(13)
where

ã (τ) = ϕ̃⊗δ̃ (τ) , b̃ (τ) = α̃ (τ)⊘ β̃ (τ) ,

ϕ̃ = (2φ)⊘
(
Γ̃⊗Γ̃

)
, κ̃ = κ⊕ λ⊗Γ̃ > 0,

γ̃ =
√
κ̃⊗κ̃⊕ 2⊗Γ̃⊗Γ̃,

α̃ (τ) = eγ̃⊗τ ⊖ 1, β̃ (τ) =
1

2
⊗α̃ (τ)⊗ (κ̃⊕ γ̃)⊕ γ̃

and

δ̃ (τ) = ln
(
γ̃ ⊘ β̃ (τ)

)
⊕ τ

2
⊗ (κ̃⊕ γ̃) .

Moreover, for α ∈ [0, 1],

(IBT,Fv (t))α = (14)[
EQ

(
νT,Fv|F1

t

)
e(ã(T−t))Lα−(b̃(T−t))

U

α
(rt)

U
α ,

EQ
(
νT,Fv|F1

t

)
e(ã(T−t))Uα−(b̃(T−t))

L

α
(rt)

L
α

]
,

where

κ̃α =


[
λΓ̃L

α + κ, λΓ̃U
α + κ

]
for λ > 0,[

λΓ̃U
α + κ, λΓ̃L

α + κ
]

for λ < 0,

κ for λ = 0,

(15)

(κ̃⊗κ̃)α =



[(
λΓ̃L

α + κ
)2

,
(
λΓ̃U

α + κ
)2]

for λ > 0,[(
λΓ̃U

α + κ
)2

,
(
λΓ̃L

α + κ
)2]

for λ < 0,

κ2 for λ = 0,
(16)

γ̃α =

[√
(κ̃⊗κ̃)

L
α + 2

(
Γ̃L
α

)2
,

√
(κ̃⊗κ̃)

U
α + 2

(
Γ̃U
α

)2]
,

(17)

(α̃ (τ))α =
[
eγ̃

L
α τ − 1, eγ̃

U
α τ − 1

]
,

ϕ̃α =

 2φ(
Γ̃U
α

)2 , 2φ(
Γ̃L
α

)2
 , (18)

(
δ̃ (τ)

)
α
=

[
ln
(

γ̃L
α

1
2 (α̃ (τ))

U
α (κ̃U

α + γ̃U
α ) + γ̃U

α

)

+
τ
(
κ̃L
α + γ̃L

α

)
2

, ln
(

γ̃U
α

1
2 (α̃ (τ))

L
α (κ̃L

α + γ̃L
α ) + γ̃L

α

)

+
τ
(
κ̃U
α + γ̃U

α

)
2

]
, (19)

(
b̃ (τ)

)
α
=

[
(α̃ (τ))

L
α

1
2 (α̃ (τ))

U
α (κ̃U

α + γ̃U
α ) + γ̃U

α

,

(α̃ (τ))
U
α

1
2 (α̃ (τ))

L
α (κ̃L

α + γ̃L
α ) + γ̃L

α

]
(20)

and

(a (τ))α =

[(
ϕ̃α ⊗int

(
δ̃ (τ)

)
α

)L
,(

ϕ̃α ⊗int

(
δ̃ (τ)

)
α

)U]
. (21)

Proof. We replace the crisp volatility parameter Γ
by its fuzzy counterpart Γ̃ and arithmetic operators
+,−, . by ⊕, ⊖, ⊗ in (10). As result we obtain the for-
mula (13).

Let α ∈ [0, 1] and τ ≥ 0. For a given fuzzy num-
ber F̃ we denote by F̃L

α and F̃U
α the lower and upper

bound of its α-level set.
Since φ, κ > 0 and Γ̃ > 0, the number κ̃⊗κ̃ ⊕

2⊗Γ̃⊗Γ̃ is also strictly positive. From direct calcula-
tions it follows that (15) and (16) hold.

Function exp (x) for x ∈ R and functions √x and
ln (x) for x > 0 satisfy the assumptions of Proposition
1 and they are increasing.
Thus, γ̃ > 0,

γ̃α =

[√(
κ̃⊗κ̃⊕ 2⊗Γ̃⊗Γ̃

)L
α
,

√(
κ̃⊗κ̃⊕ 2⊗Γ̃⊗Γ̃

)U
α

]

and (17) is satis ied. Fromdirect calculations it follows
that κ̃⊕ γ̃ > 0, α̃ (τ) ≥ 0, β̃ (τ) > 0, b̃ (τ) ≥ 0 and (20)
is ful illed. Proposition 1 implies the equality

(
eã(τ)⊖b̃(τ)⊗rt

)
α
=

[
e(ã(τ)⊖b̃(τ)⊗r̃t)

L

α ,

e(ã(τ)⊖b̃(τ)⊗r̃t)
U

α

]
, (22)

>From properties of the Cox–Ingersoll–Ross interest
rate model it follows that the fuzzy random variable
r̃t is positive for t ∈ [0, T ] and, since b̃ (T − t) ≥ 0,
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that (14) holds. Applying Proposition 1 also gives the
equality(

ln
(
γ̃ ⊘ β̃ (τ)

))
α

=

[
ln
(

γ̃L
α

1
2 (α̃ (τ))

U
α (κ̃U

α + γ̃U
α ) + γ̃U

α

)
,

ln
(

γ̃U
α

1
2 (α̃ (τ))

L
α (κ̃L

α + γ̃L
α ) + γ̃L

α

)]
,

Finally, the standard interval calculations give the
forms of ϕ̃α,

(
δ̃ (τ)

)
α
and (a (τ))α =

(
ϕ̃⊗ δ̃ (τ)

)
α
de-

scribed by (18), (19) and (21).

Applying the equality

µ ˜IBT,Fv(t)
(c) = sup

0≤α≤1
αI( ˜IBT,Fv(t))

α

(c)

one can obtain themembership function of ˜IBT,Fv (t).
For a suf iciently high value of α (e.g. α = 0.95) the
α-level set of ˜IBT,Fv (t) can be used for investment
decision-making. A inancial analyst can choose any
value from the α-level set as the catastrophe bond
price with an acceptable membership degree.

5. Monte Carlo Approach
The calculations required to ind the price of the

cat bond via the formulas introduced in Section 4
could be very complex, especially if the payment func-
tion or the model of losses are not straightforward
ones. Then instead of directly inding an analytical for-
mula for the price, other approaches may be used. In
this paper we focus on Monte Carlo simulations and
application of fuzzy arithmetic for α-cuts.

To model complex nature of the practical cases,
the parameters similar to the ones based on the real-
life data are applied. In [6] the parameters of the CIR
model are estimated using Kalman ilter for monthly
data of the Treasury bond market. But these values,
namely φ, κ,Γ, r0, are crisp ones (compare with Ta-
ble 1). Because in Section 4 the cat bond pricing ap-
proach for the CIR model with fuzzy number Γ̃ was
established, then instead of crisp value Γ = 0.0754
(as estimated in [6]), the fuzzy triangular number Γ̃
is applied (see Table 1). This fuzzy value is similar to
the crisp parameter obtained in [6], but with the in-
troduced fuzzy volatility the future uncertainty of the
inancial markets is modeled.

The other applied model, i.e. the process of losses,
is also based in our approach on the real-life data. In
[7] the information of catastrophe losses in the United
States provided by the Property Claim Services (PCS)
of the ISO (Insurance Service Of ice Inc.) and the rel-
evant estimation procedure for this data are consid-
ered. For each catastrophe, the PCS loss estimate rep-
resents anticipated industrywide insurance payments
for different property lines of insurance covering. An
event is noted as a catastrophe when claims are ex-
pected to reach a certain dollar threshold.We focus on
lognormal distribution of the value of the single loss

andNHPP (non-homogeneous Poisson process) as the
process of the quantity of catastrophic events (see Ta-
ble 1), but other random distributions and other pro-
cesses could be directly applied using the approach in-
troduced in this paper.

Asnoted in [7], becauseof annual seasonality of oc-
currence of catastrophic events, the intensity function
of losses for NHPP is given by

ρNHPP(t) = a+ 2πb sin (2π(t− c)) . (23)

The triggering points in our considerations are re-
lated to quantiles given by QNHPP-LN(x), i.e. the x-th
quantile of the cumulated value of losses for the NHPP
process (quantity of losses) and lognormal distribu-
tion (value of each loss).

After conducting N = 1000000 Monte Carlo sim-
ulations, the fuzzy value of the cat bond price was ob-
tainedusing fuzzy arithmetic (see Figure2). This fuzzy
price is close to symmetry in the case of the param-
eters from Table 1. Based on this fuzzy number, the
relevant intervals of prices for various α may be also
found. Because of practical purposes the analyst may
be also interested in crisp value of the cat bond price,
then e.g. α = 1 can be set or the crisp possibilistic
mean can be calculated (see [34, 35] for related ap-
proach in analysis of European options pricing). The
obtained results in the considered case are enumer-
ated in Table 2. For the crisp possibilistic mean the in-
tuitive function f(α) = 2α is applied. The difference
between both of the obtained crisp values is about
0.091%.

0.80 0.85 0.90 0.95
Price

0.2

0.4

0.6

0.8

1.0

alpha

Fig. 2. Fuzzy price of the cat bond (parameters of the
model from Table 1)

For other symmetric fuzzy values of the volatility
Γ̃ considered in our analysis, the calculated fuzzy cat
bond prices have similar shapes (see Figure 3). The
membership function could be also evaluated in the
case of asymmetrical triangular fuzzy values of Γ̃ (see
Figure 4).

The model of catastrophic events is usually based
onhistorical data as in the casediscussed in [7]. There-
fore the estimators calculated from such data may be
not completely adequate for future natural catastro-
phes. Then the behavior of cat bond prices could be
analyzed if some of the important parameters of the
model are changed. For example, if the parameter µLN
of lognormal distribution of the single loss becomes
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Tab. 1. Parameters of Monte Carlo simula ons

Parameters
CIR model (crisp) φ = 0.00270068, κ = 0.07223, r0 = 0.02

CIR model (fuzzy) Γ̃ = (0.07, 0.075, 0.08)
Intensity of NHPP a = 30.875, b = 1.684, c = 0.3396
Lognormal distribution µLN = 17.357, σLN = 1.7643
Triggering points K1 = QNHPP-LN(0.75),K2 = QNHPP-LN(0.85),

K3 = QNHPP-LN(0.95)
Values of losses coef icients w1 = 0.4, w2 = 0.6

Tab. 2. Crisp prices for the cat bond (parameters of the
model from Table 1)

Method Price
α = 1 0.851857
Crisp possibilistic mean 0.852631

0.75 0.80 0.85 0.90 0.95 1.00
Prices

0.2

0.4

0.6

0.8

1.0

alpha

Fig. 3. Fuzzy price of the cat bond for various
fuzzy values of Γ̃ ((0.072, 0.075, 0.078) – do ed line,
(0.07, 0.075, 0.08) – dashed line, (0.068, 0.075, 0.082) –
solid line)

0.80 0.82 0.84 0.86 0.88 0.90 0.92
Prices

0.2

0.4

0.6

0.8

1.0

alpha

Fig. 4. Fuzzy price of the cat bond for various
fuzzy values of Γ̃ ((0.07, 0.075, 0.077) – do ed line,
(0.073, 0.075, 0.08) – dashed line)

higher and other parameters are the same as in Table
1, then the relevant fuzzy prices of the cat bonds are
shifted left-side (see Figure 5) and the crisp prices are
lower (see Table 3). The same applies for the case of
various values of the parameter σLN (see Figure 6 and
Table 4). As it may be seen from Figure 5 and Figure
6, these parameters have important impact on the ob-

tained cat bond prices.

mu=17.2

mu

mu=17.4

mu=17.3

0.75 0.80 0.85 0.90 0.95 1.00
Prices

0.2

0.4

0.6

0.8

1.0

alpha

Fig. 5. Fuzzy price of the cat bond for various values of
µLN

Tab. 3. Crisp prices for for various values of µLN

µLN 17.2 17.3 17.4
Price for α = 1 0.893286 0.86935 0.83707
Crisp possibilistic
mean

0.894098 0.87014 0.837831

sigma=1.74

sigma=1.75

sigma=1.76

0.80 0.85 0.90 0.95
Prices

0.2

0.4

0.6

0.8

1.0

alpha

Fig. 6. Fuzzy price of the cat bond for various values of
σLN

6. Conclusions
In this paper the catastrophe bond pricing formula

in crisp case for the Cox–Ingersoll–Ross risk-free in-
terest rate model is derived. Then on basis of this for-
mula catastrophe bond valuation expression for fuzzy
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Tab. 4. Crisp prices for for various values of σLN

σLN 1.74 1.75 1.76
Price for α = 1 0.865891 0.858843 0.854912
Crisp possibilistic
mean

0.866678 0.859623 0.855689

volatility parameter is obtained. Since the pricing for-
mula is considered for arbitrary time moment before
maturity, fuzzy random variables are introduced. Be-
sides the fuzzy valuation formula, the forms of α-level
sets of the cat bond price are received. Therefore this
approach can be applied for general forms of fuzzy
numbers.

Also the Monte Carlo simulations are conducted in
order to directly analyze the fuzzy cat bond prices. We
apply fuzzy arithmetic and introduce triangular fuzzy
number for the value of the volatility in CIRmodel, but
using other fuzzy numbers (e.g. L-R numbers) is also
possible in our setting. Then the in luence of the shape
of fuzzy numbers and other parameters of the model
like distribution of the single loss on the inal cat bond
price is considered.
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