
Control and Cybernetics

vol. 42 (2013) No. 2

On the fuzzy control stochastic differential systems∗

by

Tran Thanh Tung

Faculty of Natural Science and Technology,
Tay Nguyen University, Daklak, Viet Nam

thanhtung_bmt@yahoo.com; tttung@ttn.edu.vn

Abstract: In this paper, fuzzy control stochastic differential
systems are introduced. The existence and some comparison re-
sults on solutions of fuzzy control stochastic differential systems and
on sheaf-solutions of sheaf fuzzy control stochastic systems are pro-
vided. The continuous dependence of solutions and sheaf-solutions
on initials and controls is investigated. The results obtained are
correct and meaningful for the theory control.
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1. Introduction

A large class of physical problems can be described by differential systems which
combine fuzziness and randomness. Recently, these systems have gained much
attention and were investigated in many directions. Feng studied the existence
result on solutions, a simple comparison result on solutions of fuzzy stochas-
tic differential systems (FSDS) based on the Hukuhara derivative, see Feng
(2000B). Some properties of linear fuzzy stochastic differential systems were
given in Feng (2003). Fei (2007) investigated the existence and uniqueness of
solutions for systems, whose differentiability is different from the concept in
Feng (2000B, 2003) and in Fei (2013), author studied fuzzy stochastic differ-
ential equations driven by a continuous local martingale. Kim researched the
systems using the stochastic integrals in the Itô sense, see Kim (2005). Very
recently, Michta and Malinowski (2011) studied the existence and uniqueness
of solutions to the stochastic fuzzy differential equations driven by Brownian
motion and the continuous dependence on initial condition and stability prop-
erties. In Michta and Malinowski (2010), the authors proposed a new approach
to fuzzy stochastic integrals of Itô and Aumann type. Michta extended the
notion of set-valued and fuzzy stochastic integrals to semimartingale integra-
tors, presented their main properties and the existence of solutions of a fuzzy
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integral stochastic equation driven by a Brownian motion, see Michta (2011).
In Michta and Malinowski (2010, 2011) and Michta (2011), the authors studied
stochastic differential equations and fuzzy integral stochastic equation driven
by a Brownian motion.

In this paper, using Hukuhara derivative provided by Feng, see Feng (2000B,
2003), fuzzy control stochastic differential systems and sheaf fuzzy control sto-
chastic systems are introduced. These control systems combine fuzziness and
randomness, and are natural extensions of ordinary and fuzzy differential equa-
tions. The existence and some comparison results on solutions of fuzzy con-
trol stochastic differential systems and on sheaf-solutions of sheaf fuzzy control
stochastic systems are studied. The continuous dependence of solutions and
sheaf-solutions on initials and controls is investigated.

The paper is organized as follows: Section 2 reviews some concepts of fuzzy
sets, Hausdorff distance, second-order fuzzy stochastic process, the mean-square
Riemann integral and mean-square differentiable. Section 3 reviews the exis-
tence result on solutions of FSDS and the comparison result on solutions of
FSDS. Section 4 provides a simple existence of solutions, some comparison
results on solutions and approximation solutions of fuzzy control stochastic
differential systems. Similar results on sheaf-solutions of sheaf fuzzy control
stochastic systems are presented. The continuous dependence of solutions and
sheaf-solutions on initials and controls is studied in this section.

2. Preliminaries and notation

The following notations and concepts were presented in detail in Diamond and
Kloeden (1994), Lakshmikantham (2000, 2005), Lakshmikantham, Bhaskar and
Devi (2006) and Lakshmikantham and Mohapatra (2003).
Let Kc(R

n) denote the collection of all nonempty, compact, convex subsets of
Rn. Let A,B be two nonempty bounded subsets of Rn. The Hausdorff distance
between A and B is defined as

D[A,B] = max{supa∈Ainfb∈B ‖ a− b ‖, supb∈Binfa∈A ‖ a− b ‖}. (1)

It is known that Kc(R
n), with the metric D is a complete metric space, see

Puri and Ralescu (1986) and Tolstonogov (2000) and if the space Kc(R
n) is

equipped with the natural algebraic operations of addition and nonnegative
scalar multiplication, then Kc(R

n) becomes a semilinear metric space which
can be embedded as a complete cone into a corresponding Banach space, see
Tolstonogov (2000).

Set E
n = {u : Rn → [0, 1] such that u satisfies (i) to (iv) mentioned below}

(i) u is normal, that is, there exists an x0 ∈ Rn such that u(x0) = 1;
(ii) u is fuzzy convex, that is, for 0 ≤ λ ≤ 1

u(λx1 + (1− λ)x2) ≥ min{u(x1), u(x2)};
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(iii) u is upper semicontinuous;

(iv) [u]
0
= cl{x ∈ Rn : u(x) > 0} is compact.

The element u ∈En is called a fuzzy set.
For 0 < α ≤ 1, the set [u]α = {x ∈ Rn : u(x) ≥ α} is called the α-level set.

From (i)- (iv), it follows that the α-level sets are in Kc(R
n), for 0 ≤ α ≤ 1.

Let us denote

D0[u, v] = sup
{

D
[

[u]α, [v]α
]

: 0 ≤ α ≤ 1
}

,

the distance between u and v in En, where D
[

[u]α, [v]α
]

is Hausdorff distance

between two sets [u]α, [v]α of Kc(R
n). Then, (En, D0) is a complete space, see

Diamond and Kloeden (1994) and Puri and Ralescu (1986).
Let us denote θ ∈ En the zero element of En as follows

θ(z) =

{

1 if z = 0̂,

0 if z 6= 0̂,

where 0̂ is the zero element of Rn.

Now, we recall some useful concepts from Feng (1999A,B, 2000A,B, 2001,
2003). The norm ‖ u ‖ of a fuzzy number u ∈ En is defined as ‖ u ‖= D0[u, θ].
Let (Ω,A, P ) be a complete probability space. A fuzzy random variable (f.r.v.
for short) is a Borel measurable function X : (Ω,A) → (En, D0). If E ‖ X ‖<
+∞, then the expected value EX exists.
Let L2 = {X |X is an f.r.v. withE ‖ X ‖2< +∞}. Two f.r.v’s, X and Y are
called equivalent if P (X 6= Y ) = 0. All equivalent elements in L2 are identified.
Define ρ[X,Y ] = (ED2

0 [X,Y ])1/2, X, Y ∈ L2.

The norm ‖ X ‖2 of an element X ∈ L2 is defined by

‖ X ‖2= ρ[X, θ] = (E(‖ X ‖2))1/2.

The (L2, ρ) is a complete space, see Feng (1999A) and ρ satisfies

ρ[X + Z, Y + Z] = ρ[X,Y ], ρ[λX, λY ] =| λ | ρ[X,Y ] |, (2)

ρ[λX, kX ] ≤| λ− k |‖ X ‖2, (3)

for any X,Y, Z ∈ L2 and λ, k ∈ R.

Let u, v ∈ En. The set w ∈ En satisfying u = v + w is known as the H-
difference of the sets u and v and is denoted by the symbol u − v. Because
u− v : En ×En → En is continuous, if X and Y are f.r.v’s and the H-difference
of X and Y exists a.s., i.e. P (X − Y exists) = 1, then X − Y is an f.r.v and
X − Y ∈ L2 provided X,Y ∈ L2.
Let (Xn)n ≥ 1 be a sequence in L2. We call that Xn converges in mean square

or m.s. converges to X as n → ∞ if ρ[Xn;X ] → 0, and write Xn
m.s.
−−−→ X or

lim
n→∞

Xn = X.
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Definition 1. [Feng (1999A)]. Let I be a finite or an infinite interval in R. A
mapping X : I → L2 is called a second-order fuzzy stochastic process (f.s.p, for
short). If X is continuous at a t ∈ I with respect to the metric ρ then we call
X continuous in mean square or m.s. continuous at t. If X is m.s. continuous
at every t ∈ I then we call X m.s. continuous. An f.s.p. {X(t), t ∈ I} is called

stochastic continuous provided D0[X(s), X(t)]
p

−→ 0, as s → t, for each t ∈ I.

Definition 2. [Feng (1999A)]. Let {X(t), t ∈ I} be a second-order f.s.p. defined
on I=[a,b]. For each finite partition ∆n of [a,b]: ∆n : a = t0 < t1 < ... < tn = b,
and for arbitrary points t′i, ti−1 ≤ t′i ≤ ti, i = 1, 2, ..., n, let Sn =

∑n
i=1 ∆tiX(t′i)

and | ∆n |= max1≤i≤n∆ti, where ∆ti = ti − ti−1. Then the mean-square
Riemann integral or m.s. integral of X(t) on the interval [a,b] is defined by

∫ b

a

X(t)dt = lim
|∆n|→0

Sn

provided this limit exists and it is independent of the partition as well as the
selected points ti. And we say that X(t) is m.s. integrable on [a,b].

If {X(t), t ∈ [a, b]} is non-random, the m.s. convergence equals the con-
vergence in D0, this time the m.s. integral is called R-integral. If X(t) is
mean-square continuous except for finitely many points of [a,b] then X(t) is
mean-square integrable on [a,b].

The properties of m.s. integral are the following.

Theorem 1. [Feng (1999A)]. Let X(t) and Y (t) be m.s. integrable on [a,b].

(i) For each r ∈ [0, 1], [
∫ b

a
X(t)dt]r =

∫ b

a
[X(t)]rdt.

(ii) For each α, β ∈ R, αX(t)+βY (t) is m.s. integrable on [a, b] and
∫ b

a
(αX(t)+

βY (t))dt = α
∫ b

a X(t)dt+ β
∫ b

a Y (t)dt.

(iii) X(t) is m.s. integrable on any subinterval of [a,b], and
∫ b

a
X(t)dt =

∫ c

a
X(t)dt+

∫ b

c X(t)dt, a ≤ c ≤ b.

(iv) EX(t) is R-integrable on [a,b] and E
∫ b

a
X(t)dt =

∫ b

a
EX(t)dt.

(v) If ρ[X(t), Y (t)] is Riemann integrable on [a,b] then ρ[
∫ b

a
X(t)dt,

∫ b

a
Y (t)dt] ≤

∫ b

a ρ[X(t), Y (t)]dt.

Definition 3. [Feng (1999A)]. A second-order f.s.p. {X(t), t ∈ I = [a, b]}, is
m.s. differentiable at τ ∈ I if there exists an X ′(τ) ∈ L2 such that the m.s.
limits

lim
h→0+

X(τ + h)−X(τ)

h
and lim

h→0+

X(τ)−X(τ − h)

h
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exist and is equal to X ′(τ). At the end points of I we consider only the one-
sided derivatives. If X(t) is m.s. differentiable at every t ∈ I then we call X(t)
m.s. differentiable on I.

This definition is called Hukuhara derivative and is based on the Hukuhara
difference of fuzzy sets. The restriction of this definition is that the existence
of Hukuhara derivative is not easy, even for some simple fuzzy mappings, see
Diamond and Kloeden (1994). Some properties of m.s. differentiation are the
following.

Theorem 2. [Feng (1999A)].

(i) If X(t) is m.s. differentiable at t0 ∈ I then X(t) is m.s. continuous at t0 ∈ I.

(ii) If X(t) and Y (t) are m.s. differentiable on I, then for any α, β ∈ R, αX(t)+
βY (t) is m.s. differentiable on I and (αX(t) + βY (t))′ = αX ′(t) + βY ′(t).

(iii) If X(t), t ∈ [a, b], is m.s. continuous then the m.s. integral Y (t) =
∫ t

a X(s)ds, t ∈ [a, b];, is m.s. differentiable and Y ′(t) = X(t).

(iv) If X(t), t ∈ I, is m.s. differentiable then [X(t)]r is m.s. differentiable and
[X ′(t)]r = ([X(t)]r)′, for all r ∈ [0, 1]. In the case of E1, we take [X(t)]r =
[fr(t), gr(t)], then fr(t) and gr(t) are m.s. differentiable and [X ′(t)]r = [f ′

r

(t), g′r(t)].

(v) (Newton - Leibniz formula) If X ′(t) is m.s. integrable on [a,b] then for each

t ∈ [a, b], X(t) = X(a) +
∫ t

a
X ′(s)ds.

For further details on mean-square calculus the reader is referred to Feng
(1999A,B, 2000A,B, 2001, 20003).

3. Fuzzy stochastic differential systems

The following concepts and results on fuzzy stochastic differential systems are
taken from Feng (1999B, 2000A). Let X1, ..., Xm be f.r.v.’s. X = (X1, ..., Xm)T

is called an m-dimensional fuzzy random vector, where T denotes the transpose
of the vector. It is a Borel measurable function X : Ω → (En)m = En× ...×En.
Let Lm

2 = {X|X = (X1, ..., Xm)T , Xi ∈ L2, i = 1, ...,m}. Define

ρ
[

X,Y
]

= max{ρ
[

Xi, Yi

]

, Xi, Yi ∈ L2, 1 ≤ i ≤ m}.

The norm ‖ X ‖2 of an element X ∈ Lm
2 is defined by ‖ X ‖2= ρ

[

X, θm
]

=
max{‖ Xi ‖2, 1 ≤ i ≤ m}, where θm is the zero element of Lm

2 .

By the completeness of (L2, ρ) and (2), (3), a standard proof applies that
(Lm

2 , ρ) is a complete metric space and ρ satisfies some properties as in (2)- (3).
A second-order m-dimensional vector f.s.p. is characterized by a mapping of

the interval I into Lm
2 . For the sake of convenience, we shall adopt the notation

X : I → Lm
2 in what follows. The m.s. continuity, m.s. differentiation, and

m.s. integration associated with a second-order m-dimensional vector f.s.p. are
defined with respect to the metric ρ in Lm

2 . Hence, an m-dimensional vector
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f.r.p. {X(t), t ∈ I}, is m.s. continuous at t, for example, if ρ
[

X(t+h),X(t)
]

→
0, as h → 0. In view of this definition, it is clear that the m-dimensional
vector f.s.p. {X(t), t ∈ I}, is m.s. continuous at t ∈ I if and only if each
of its component processes is m.s. continuous at t. Similar definitions and
observations can be formulated with regard to m.s. differentiation and m.s.
integration of the second-order m-dimensional vector f.s.p. {X(t), t ∈ I}.

Feng (1999B) considered the fuzzy stochastic differential systems (FSDS) in
the form

X ′(t) = F (t,X(t)), t ∈ I = [t0, T ] ⊂ R+, (1)

with the initial value X(t0) = X0 ∈ Lm
2 , where F is a mapping: I×Lm

2 → Lm
2 .

Systems (1) are fuzzy stochastic differential systems. In the case of m = 1,
(1) is a fuzzy stochastic differential equation. Systems(1) with out randomness,
are fuzzy differential systems. Systems (1) without fuzziness, are stochastic
differential systems. And, systems (1) without randomness and fuzziness, are
ordinary differential equations. We now consider the solution of (1) in the mean
square sense. From Theorem 2 we know that X(t) is a solution of (1) if and
only if it is m.s. continuous and satisfies the integral equation

X(t) = X0 +

∫ t

t0

F (s,X(s))ds. (2)

Some results on solutions of fuzzy stochastic differential systems are the
following.

Theorem 3. [Feng (1999B)] Let F be m.s. continuous with respect to t and
there exists a k > 0 such that

ρ
[

F (t,X),F (t,Y )
]

≤ kρ
[

X,Y
]

, (3)

for all t ∈ I and X,Y ∈ Lm
2 . Then (1) has a unique solution.

Theorem 4. [Feng (1999B)] Let F be as in Theorem 3.1 Then there exist con-
stants c1 and c2 such that

(i) ρ[X(t,X0),X(t,Y 0] ≤ c1ρ[X0,Y 0], for any X0,Y 0 ∈ Lm
2 , t ∈ I.

(ii) supt∈I ‖ X(t,X0) ‖2≤ c1
(

c2+ ‖ X0 ‖2
)

.

Here, the result (i) of Theorem 2.2 in Feng (1999B) is rewritten in form of
(i) in Theorem 4.
The explicit representation of solutions for the first-order linear fuzzy stochas-
tic differential systems with general coefficient matrix was introduced in Feng
(2000A).
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4. Main results

Based on the fuzzy stochastic differential systems (1), we introduce the new
concept of fuzzy control stochastic differential systems (FCSDS) as follows:

X ′(t) = F (t,X(t),U(t)), t ∈ I = [t0, T ] ⊂ R+,X(t0) = X0 ∈ Lm
2 (1)

with the initial value X(t0) = X0 ∈ Lm
2 , where F is a mapping: F ∈ C

[

I ×

Lm
2 × L

p
2, L

m
2

]

, state X(t) ∈ Lm
2 and control U(t) ∈ L

p
2.

If U : I → L
p
2 is m.s. integrable, then it is called admissible control. Let Uac

be a set of all admissible controls.
Without randomness and fuzziness, (1) are classical control differential sys-

tems. In practice, we are often faced with the random experiments and fuzzy
data. So, FCSDS describe the motion in physical problems better than ordinary
differential systems.
We consider the solution of (1) in the mean square sense. From Theorem 2
we know that X(t) is a solution of (1) if and only if it is m.s. continuous and
satisfies the integral equation

X(t) = X0 +

∫ t

t0

F (s,X(s),U (s))ds. (2)

Now, set

F ∗(t,X(t)) = F (t,X(t),U(t)).

We have the following simple existence result on solutions of FCSDS (1).

Theorem 5. Let F ∗ be m.s. continuous with respect to t and there exists a
k > 0 such that

ρ
[

F ∗(t, X̄),F ∗(t,X)
]

≤ kρ
[

X̄,X
]

(3)

for all t ∈ I, X̄,X ∈ Lm
2 . Then (1) has a unique solution.

The conclusion of Theorem 5 follows from Theorem 3.

Remark 1. Theorems 3 and 5 also hold when k is a bounded positive continuous
function, that means, k : I → R+ and k(t) < k0 for all t ∈ I, where k0 is a
constant.

Example 1. A simple population growth model of a specie is as follows:

p′(t) = a(t)p(t), p(t0) = p0 ∈ R+, (4)

where t ∈ [t0, T ], p(t) ∈ R+ is population at time t and a(t) is a real-valued
continuous function. It is also called the logistic law of population growth of
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a specie. This is an ordinary differential equation and it is easy to solve. In
practice, we are often faced with random experiments and fuzzy data and we
do not know exactly the population of a country or of a specie at the time t.
For example, if population of a country is said to be p0 million people at the
time t = t0, it is understood that the population is "about" p0. The population
is not only fuzzy but also random, so p(t) and p0 are considered to be fuzzy
random variables, one has the fuzzy stochastic differential equation as follows.

p′(t) = a(t)p(t), p(t0) = p0 ∈ L2, (5)

where t ∈ [t0, T ], p(t) ∈ L2 is population at time t and a(t) is a real-valued
continuous function. The equation satisfies the Theorem 3, so it has solutions.
By Example 3.6, Feng (2003), the solution of the equation (5), where a(t) is
positive, is

p(t) = p0e
∫

t

t0
a(s)ds

.

In this simple example, the structure of solutions of (5) is similar to that of the
ordinary differential equation (4), where p(t) and p0 are fuzzy random variables.

Now, a general form of (5) is

P ′(t) = a(t)P (t),P (t0) = P 0 ∈ Lm
2 , (6)

where t ∈ [t0, T ], P (t) ∈ Lm
2 is population at time t and a(t) is a real-valued

continuous function. Here, P (t) is a second-order m-dimensional vector f.s.p.
that means, the vector of populations of m countries.

The control systems based on FCSDS are formed, for example

P ′(t) = a(t)P (t) + b(t)U(t),P (t0) = P 0 ∈ Lm
2 , (7)

where t ∈ [t0, T ], P (t) ∈ Lm
2 ,U(t) ∈ L

p
2 and a(t), b(t) are matrices of real- valued

continuous functions with appropriate dimensions. The control U(t) combines
fuzziness and randomness.
In Ovsanikov (1980), the concept of sheaf-solution of classical control differential
systems was introduced. Instead of studying each solution, one studies sheaf-
solution, that means, a set of solutions. In Phu, Quang and Tung (2008), Phu
and Tung (2005, 2006A,B, 2007), some results on sheaf-solutions in sheaf fuzzy
control systems and sheaf set control systems were studied. In this paper, we
introduce the concept of sheaf-solutions for FCSDS (1). Let H0 be the collection
of some given initials of FCSDS in Lm

2 . The notation X0 ∈ H0 means that X0

is an element of H0, and H0 is considered to be a subset of Lm
2 (H0 ⊂ Lm

2 for
short). The concept sheaf-solutions of FCSDS as following.

Definition 4. The sheaf-solution (or sheaf-trajectory) of (1) which gives at the
time t a set

Ht,U = {X(t) = X(t,X0,U(t))− solution of (1) | X0 ∈ H0},

where t ∈ I,H0 ⊂ Lm
2 ,U ∈ Uac.
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The Ht,U is called a cross − area at (t,U) (or (t,U) − cut) of the sheaf-
solution. Systems (1) with their sheaf-solutions are called sheaf fuzzy control
stochastic systems (SFCSS). For two given initial sets H̄0 and H0, we have two
sheaf-solutions whose cross-areas are

Ht,U =
{

X(t) = X(t,X0,U(t)) − solution of (1) | X0 ∈ H0

}

, (8)

H̄t,Ū =
{

X̄(t) = X(t, X̄0, Ū(t)) − solution of (1) | X̄0 ∈ H̄0

}

, (9)

where t ∈ I,H0, H̄0 ⊂ Lm
2 ,U ∈ Uac.

In this paper, instead of comparison of two sheaf-solutions, we compare their
cross-areas.
Suppose that Q,G ⊂ Ll

2 for some positive integer l. Here are some useful
notations:

d∗[Q,G] = sup{ρ[X,Y ] : X ∈ Q,Y ∈ G},

diam[Q] = sup{ρ[X,Y ] : X,Y ∈ Q},

d[Q] = d∗[Q, θl], θl is the zero element of Ll
2,

‖ Q ‖2= sup{‖ X ‖2: X ∈ Q}.

(10)

The set Q is said to be bounded if d[Q] < +∞.
Now, one considers the assumption on F below.

The mapping F : R+ × Lm
2 × L

p
2 → Lm

2 satisfies the condition

ρ
[

F (t, X̄ , Ū),F (t,X,U)
]

≤ c(t)
[

ρ[X̄,X] + ρ[Ū ,U ]
]

(11)

for all t ∈ I;X, X̄ ∈ Lm
2 where c(t) is a positive, Lebesgue measurable, bounded

real function on I. Let C =
∫ T

t0
c(t)dt. Since c(t) is Lebesgue measurable and

bounded on I, it is integrable and there exists a positive number K such that
c(t) ≤ K for all t ∈ I.

In ordinary differential equations and control systems described by ordinary
differential equations, Lipschitz condition plays an important role. Condition
(11), is considered a type of Lipschitz condition on F in X and U , and is
widely used in the paper. The Lipschitz condition expresses the fact that F

can be bounded by a linear function for all t ∈ I. Under Lipschitz condition,
many properties of solutions of these systems are studied. A simple example for
condition (11) is the following.

Example 2. Consider

X ′(t) = a(t)X(t) + b(t)U(t),X(t0) = X0 ∈ L2,

where t ∈ [t0, T ], X(t) ∈ L2,U(t) ∈ L2. The real functions a(t), b(t) are positive
and increasing. It is easy to check that the mapping F satisfies the condition
(11) with real function c(t) = max{a(t), b(t)}.
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Next, ones suppose that H0, H̄0,U
ac are bounded. In the following the-

orem, the solutions of (1) depend continuously on initials and controls.

Theorem 6. Suppose that F is m.s. continuous and satisfies (11) and X̄(t) =
X(t, t0, X̄0, Ū(t)), X(t) = X(t, t0,X(t),U (t)) are two solutions of (1) such
that X̄(t0) = X̄0, X(t0) = X0. Then, for every ǫ > 0 there exists a δ(ǫ) > 0
such that

ρ
[

X̄(t),X(t)
]

≤ ǫ if ρ
[

Ū(t),U(t)
]

≤ δ(ǫ) and ρ
[

X̄0,X0

]

≤ δ(ǫ)

where t ∈ I, Ū(t),U(t) ∈ Uac.

Proof. Solutions of (1), originating at the points X0 and X̄0, are equivalent to
the following integral forms

X(t) = X0 +

∫ t

t0

F (s,X(s),U (s))ds,

X̄(t) = X̄0 +

∫ t

t0

F (s, X̄(s), Ū (s))ds.

Estimating ρ
[

X̄(t),X(t)
]

, using property of metric ρ and Theorem 1 (v), we
got

ρ
[

X̄(t),X(t)
]

≤ ρ
[

X̄0,X0

]

+

∫ t

t0

ρ
[

F (s, X̄(s), Ū(s)),F (s,X(s),U (s))
]

ds.

By assumption (11), one has

ρ
[

X̄(t),X(t)
]

≤ ρ
[

X̄0,X0

]

+

∫ t

t0

c(s)
[

ρ
[

X̄(s),X(s)
]

+ ρ[Ū(s),U(s)]
]

ds

≤ ρ
[

X̄0,X0

]

+

∫ t

t0

c(s)ρ
[

X̄(s),X(s)
]

ds+K

∫ t

t0

ρ
[

Ū(s),U(s)
]

ds,

(12)

then, using ρ
[

Ū(t),U(t)
]

≤ δ(ǫ) and ρ
[

X̄0,X0

]

≤ δ(ǫ), we obtain

ρ
[

X̄(t),X(t)
]

≤ δ(ǫ) +K(T − t0)δ(ǫ) +

∫ t

t0

c(s)ρ
[

X̄(s),X(s)
]

ds.

By the classical Gronwall inequality, we have the following estimate

ρ
[

X̄(t),X(t)
]

≤
[

1 +K(T − t0)
]

δ(ǫ) exp(C).

With given ǫ > 0, if we choose

0 < δ(ǫ) ≤
ǫ

[

1 +K(T − t0)
]

exp(C)
,
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then

ρ
[

X̄(t),X(t)
]

≤ ǫ.

The proof is completed.
The following result is a consequence of Theorem 6.

Corollary 1. Under assumptions of Theorem 6, one has d∗
[

H̄t,Ū ,Ht,U

]

≤ ǫ

if d∗
[

H̄0,H0

]

≤ δ(ǫ) and ρ
[

Ū(t),U(t)
]

≤ δ(ǫ) where t ∈ I and Ū(t),U(t) ∈
Uac.

The sheaf-solutions of (1) depend continuously on initials and controls.
The distance between two sheaf-solutions is bounded, is content of the fol-

lowing theorem.

Theorem 7. Suppose that F is m.s. continuous and satisfies (11) and H̄0,H0,U
ac

are bounded subsets. Then

d∗
[

H̄t,Ū ,Ht,U

]

≤
[

d∗
[

H̄0,H0

]

+K.diam[Uac](T − t0)
]

.exp(C) (13)

where H̄t,Ū ,Ht,U are any cross-areas of sheaf-solutions of (1), for all t ∈ I and

Ū(t),U(t) ∈ Uac.

Proof. Starting as in the proof of Theorem 6, we arrive at (12) and use first
notation in (10), then

ρ
[

X̄(t),X(t)
]

≤ d∗
[

H̄0,H0

]

+

∫ t

t0

c(s)
[

ρ
[

X̄(s),X(s)
]

ds+Kdiam[Uac](T−t0).

Using the classical Gronwall inequality, then the proof is completed.
If H̄0 = H0 then d∗

[

H̄0,H0

]

= diam[H0]. So, the estimate (13) becomes

d∗
[

H̄t,Ū ,Ht,U

]

≤
[

diam
[

H̄0

]

+K.diam[Uac](T − t0)
]

.exp(C).

The above results are similar the ones in Phu and Tung (2006B, 2007) for sheaf
fuzzy control systems and sheaf set control systems, but for stochastic systems.

Consider the following fuzzy control differential systems

X̄′ = F̄ (t, X̄(t), Ū(t)), X̄(t0) = X̄0 ∈ Lm
2 , (14)

where F̄ ∈ C[R+ × Lm
2 × L

p
2, L

m
2 ].

An assumption on F of (1) and F̄ of (14) as follows.

ρ
[

F̄ (t, X̄, Ū),F (t,X ,U)
]

≤ c(t)
[

ρ[X̄,X] + ρ[Ū ,U ]
]

, (15)

for all t ∈ I; Ū ,U ∈ Uac; X̄,X ∈ Lm
2 , where c(t) satisfies the condition as in

(11).
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Example 3. Consider two systems

X ′(t) = a1(t)X(t) + b1(t)U(t),

X̄
′
(t) = a2(t)X̄(t) + b2(t)Ū(t),

where a1, a2, b1, b2 ∈ C[I,R+], X(t), X̄(t) ∈ L1
2;U(t), Ū(t) ∈ L1

2.
The condition (15) holds for c(t) = max{| a1(t)− a2(t) |, | b1(t)− b2(t) |}.

We compare solutions of (1) to the ones of (14) for studying the influence of
right-hand side in (1) on solutions.

Theorem 8. Suppose that F of ( 1) and F̄ of (14) are m.s. continuous and
satisfy (15) and X̄(t),X(t) are two solutions of (1) and (14) originating at
different initials X̄0,X0 with controls Ū(t),U (t), respectively. Then, for every
ǫ > 0 there exists a δ(ǫ) > 0 such that

ρ
[

X̄(t),X(t)
]

≤ ǫ

if ρ
[

X̄0,X0

]

≤ δ(ǫ) and ρ[Ū(t),U (t)] ≤ δ(ǫ), (16)

where t ∈ I; Ū(t),U(t) ∈ Uac.

The proof is similar the one of Theorem 6. So, we omit the details. In The-
orem 8, it is concluded that the solutions of (1) depend continuously on initials,
controls and right-hand side.

An immediate consequence of Theorem 8 is the following result on compar-
ison of two sheaf-solutions of (1) and (14).

Corollary 2. Suppose that F of (1) and F̄ of (14) are m.s. continuous and
satisfy (15), and H̄t,Ū ,Ht,U are two cross-areas of sheaf-solutions of (1) and

(14) corresponding to H̄0,H0 and controls Ū(t),U(t) ∈ Uac. Then, for every
ǫ > 0 there exists a δ(ǫ) > 0 such that

d∗
[

H̄t,Ū ,Ht,U

]

≤ ǫ

if d∗
[

H̄0,H0

]

≤ δ(ǫ) and ρ[Ū(t),U (t)] ≤ δ(ǫ)

where t ∈ I; Ū(t),U(t) ∈ Uac.

Similar to solutions, the sheaf-solutions of (1) depend continuously on
controls, initials and right-hand side. The following theorem is similar in proving
to Theorems 6-7.

Theorem 9. Suppose that F of (1) and F̄ of (14) are m.s. continuous and
satisfy (15) and H̄t,Ū ,Ht,U are two cross-areas of sheaf-solutions of (1) and

(14) corresponding to H̄0,H0, and controls Ū(t),U (t) ∈ Uac and H̄0,H0,U
ac

are bounded subsets. Then one has

d∗
[

H̄t,Ū ,Ht,U

]

≤
[

d∗[H̄0,H0] +K. diam[Uac](T − t0)
]

exp (C),

for all t ∈ I; Ū(t),U(t) ∈ Uac.
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With Lipschitz condition, one proves that solutions and sheaf-solutions of
systems (1) depend continuously on initials, controls and right-hand side. And,
for upper bounds of distances between two solutions, two sheaf-solutions are
provided. This is useful in practice. In classical case, many tools are used to
study control systems and nonlinear control systems can be approximated by
linear ones. Up to now, unfortunately, for fuzzy and stochastic fields, there
are no concepts of partial derivatives, so nonlinear control systems can not be
approximated by linear ones and the distance is our main tool.

Next, we use the methods presented in Lakshmikantham (2000, 2005), Lak-
shmikantham, Bhaskar and Devi (2006) and Lakshmikantham and Mohapatra
(2003) to compare the solutions of the FCSDS. To investigate the qualitative be-
havior of solutions of (1), the following comparison result can be proved via the
theory of ordinary differential inequalities. The the maximal solutions of scalar
differential equations are used for comparison and estimation of the solutions of
FCSDS.

Theorem 10. Assume that F is m.s. continuous and

ρ
[

F (t, X̄, Ū),F (t,X ,U)
]

≤ g(t, ρ[X̄,X]), (17)

for (t, X̄, Ū), (t,X,U) ∈ I × Lm
2 × L

p
2 where g ∈ C

[

R+ × R+,R+

]

and g(t, w)
is nondecreasing in w for each t ∈ I. Suppose further that the maximal solution
r(t) = r(t, t0, w0) of scalar differential equation

w′ = g(t, w), w(t0) = w0 ≥ 0

exists for t ∈ I.

Then, if X̄(t) = X̄(t, t0, X̄0, Ū(t)) and X(t) = X(t, t0,X0,U(t)) are any
solutions of (1) such that X̄(t0) = X̄0,X(t0) = X0; X̄0,X0 ∈ Lm

2 existing for
t ∈ I, one has

ρ
[

X̄(t),X(t)
]

≤ r(t, t0, w0), for all t ∈ I and Ū(t),U (t) ∈ Uac, (18)

provided ρ
[

X̄0,X0

]

≤ w0.

Proof. The solutions of (1) originating at X0, X̄0 are equivalent to the following
integral forms

X(t) = X0 +

∫ t

t0

F (s,X(s),U (s))ds,

X̄(t) = X̄0 +

∫ t

t0

F (s, X̄(s), Ū (s))ds.

Set m(t) = ρ
[

X̄(t),X(t)
]

, so that m(t0) = ρ
[

X̄0,X0

]

≤ w0. Using the proper-
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ties of metric ρ and Theorem 1 (v), one has

m(t) = ρ
[

X̄0 +

∫ t

t0

F
(

s, X̄(s), Ū(s)
)

ds,X0 +

∫ t

t0

F
(

s,X(s),U (s)
)

ds
]

≤ ρ
[

X̄0 +

∫ t

t0

F
(

s, X̄(s), Ū(s)
)

ds, X̄0 +

∫ t

t0

F (s,X(s),U(s)
)

ds
]

+ ρ
[

X̄0 +

∫ t

t0

F
(

s,X(s)U(s)
)

ds,X0 +

∫ t

t0

F
(

s,X(s),U (s)
)

ds
]

= ρ
[

∫ t

t0

F
(

s, X̄(s), Ū(s)
)

ds,

∫ t

t0

F
(

s,X(s),U(s)
)

ds
]

+ ρ
[

X̄0,X0

]

≤ m(t0) +

∫ t

t0

ρ
[

F
(

s, X̄(s), Ū(s)
)

,F
(

s,X(s),U(s)
)]

ds.

Then, using (17), we estimate

m(t) ≤ m(t0) +

∫ t

t0

g
(

s, ρ
[

X̄(s),X(s)
])

ds

= m(t0) +

∫ t

t0

g
(

s,m(s)
)

ds, t ∈ I.

Applying Theorem 1.9.2 from Lakshmikantham and Leela (1969), we conclude
that m(t) ≤ r(t, t0, w0), t ∈ I. The proof is completed.

In Example 2, if diam[Uac] ≤ L, then condition (17) holds for the func-
tion g(t, w) = a(t)w + b(t)L. An immediate consequence of Theorem 10 is the
following:

Corollary 3. Under assumptions of Theorem 10, one has

d∗
[

H̄t,Ū ,Ht,U

]

≤ r(t, t0, w0), for all t ∈ I and Ū(t),U(t) ∈ Uac

provided d∗
[

H̄0,H0

]

≤ w0.

The results in Theorem 10 and its corollary are similar to the ones for the
fuzzy control differential equations from Phu and Tung (2006B) and set control
differential equations Phu and Tung (2007), but in stochastic systems. Using
differential inequalities, we can dispense with the monotone character of g(t, w)
assumed in Theorem 10.

Theorem 11. Let the assumptions of Theorem 10 hold except for the property
that g(t, w) in w is nondecreasing. Then the conclusion (18) is valid.

Proof. Set m(t) = ρ[X̄(t),X(t)], then

m(t+ h)−m(t) = ρ[X̄(t+ h),X(t+ h)]− ρ[X̄(t),X(t)].
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Using the property of metric ρ, we estimate

ρ[X̄(t+ h),X(t+ h)]

≤ ρ[X̄(t+ h), X̄(t) + hF (t, X̄(t), Ū(t))]

+ ρ[X̄(t) + hF (t, X̄(t), Ū(t)),X(t+ h)];

≤ ρ[X̄(t+ h), X̄(t) + hF (t, X̄(t), Ū(t))]

+ ρ
[

X(t) + hF
(

t,X(t),U(t)
)

,X(t+ h)
]

+ ρ
[

X̄(t) + hF
(

t, X̄(t), Ū(t)
)

,X(t) + hF
(

t,X(t), ,U(t)
)]

;

≤ ρ[X̄(t+ h), X̄(t) + hF (t, X̄(t), Ū(t))]

+ ρ
[

X(t) + hF
(

t,X(t),U(t)
)

,X(t+ h)
]

+ ρ
[

X̄(t) + hF
(

t, X̄(t), Ū(t)
)

, X̄(t) + hF
(

t,X(t),U (t)
)]

+ ρ
[

X̄(t) + hF (t,X(t),U(t)),X(t) + hF (t,X(t),U (t))
]

;

≤ ρ[X̄(t+ h), X̄(t) + hF (t, X̄(t), Ū(t))]

+ ρ
[

X(t) + hF
(

t,X(t),U(t)
)

,X(t+ h)
]

+ ρ
[

hF
(

t, X̄(t), Ū(t)
)

, hF
(

t,X(t),U (t)
)]

+ ρ
[

X̄(t),X(t)
]

.

Then, one has

ρ[X̄(t+ h),X(t+ h)]− ρ
[

X̄(t),X(t)
]

≤ ρ[X̄(t+ h), X̄(t) + hF (t, X̄(t), Ū(t))]

+ ρ
[

X(t) + hF
(

t,X(t),U(t)
)

,X(t+ h)
]

+ ρ
[

hF
(

t, X̄(t), Ū(t)
)

, hF
(

t,X(t),U(t)
)]

.

It follows that

m(t+ h)−m(t)

h
≤

1

h
ρ
[

X̄(t+ h), X̄(t) + hF
(

t, X̄(t), Ū (t)
)]

+
1

h
ρ
[

X(t) + hF
(

t,X(t),U (t)
)

,X(t+ h)
]

+
1

h
ρ
[

hF
(

t, X̄(t), Ū(t)
)

, hF
(

t,X(t),U (t)
)]

.
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Using the properties of metric ρ, we find that

D+m(t) = lim sup
h→0+

1

h

[

m(t+ h)−m(t)
]

;

≤ lim sup
h→0+

1

h
ρ
[X̄(t+ h)− X̄(t)

h
,F (t, X̄(t), Ū(t))

]

+ lim sup
h→0+

ρ
[

F (t,X(t),U (t)),
X(t+ h)−X(t)

h

]

+ ρ
[

F (t, X̄(t), Ū (t)),F (t,X(t),U(t))
]

,

where D+m(t) is the Dini derivative of m(t).
Because X̄(t), X(t) are solutions of (1) and (17), D+m(t) ≤ g(t,m(t)). By the
results of Theorem 1.4.1 in Lakshmikantham and Leela (1969), the result (18)
holds. The proof is completed.

It is easy to check the following corollary:

Corollary 4. Under assumptions of Theorem 11, one has

d∗
[

H̄t,ŪHt,U

]

≤ r(t, t0, w0), for all t ∈ I and Ū(t),U (t) ∈ Uac

provided d∗
[

H̄0,H0

]

≤ w0.

Using the weaker assumptions than those of Theorems 10-11, we have the
following theorem:

Theorem 12. Assume that F is m.s. continuous and

lim sup
h→0+

1

h

{

ρ
[

X̄ + hF (t, X̄ , Ū),X + hF (t,X,U)
]

−ρ[X̄,X]
}

≤ g(t, ρ[X̄,X]),

(19)

where t ∈ I; X̄,X ∈ Lm
2 ; Ū ,U ∈ Uac and the maximal solution r(t, w0) of the

scalar differential equation

w′ = g(t, w), w(t0) = w0 ≥ 0

exists for t ∈ I, where g ∈ C[I × R+,R+]. Then the conclusion of Theorem 10
is valid.

Proof. Starting as in the proof of Theorem 11, we arrive at

m(t+ h)−m(t)

= ρ
[

X̄(t+ h), X(t+ h)
]

− ρ[X̄(t), X(t)]

≤ ρ
[

X̄(t+ h), X̄(t) + hF (t, X̄(t), Ū (t)
]

+ ρ [X(t) + hF (t,X(t),U(t)),X(t+ h)]

+ ρ
[

X̄(t) + hF (t, X̄(t), Ū (t)), X(t) + hF (t,X(t),U(t))
]

− ρ
[

X̄(t), X(t)
]

.
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Then, we estimate

D+m(t) = lim sup
h→0+

1

h
[m(t+ h)−m(t)]

≤ lim sup
h→0+

1

h

{

ρ
[

X̄(t) + hF (t, X̄(t), Ū(t))

− (X(t) + hF (t,X(t),U (t)))
]

− ρ[X̄(t),X(t)]
}

+ lim sup
h→0+

ρ
[X̄(t+ h)− X̄(t)

h
, F (t, X̄(t), Ū(t))

]

+ lim sup
h→0+

ρ
[

F (t,X(t),U (t)),
X(t+ h)−X(t)

h

]

≤ g(t, ρ[X̄(t), X(t)]) = g(t,m(t)), t ∈ I.

Because X̄(t), X(t) are solutions of (1), using (19) and using Theorem 1.4.1
in Lakshmikantham and Leela (1969), we obtain (18). The proof is completed.

The result in Theorem 12 of FCSDS is similar the one in Theorem 2.2.3 from
Lakshmikantham, Bhaskar and Devi (2006) of the set differential equation, but
in stochastic systems.

Corollary 5. Under assumptions of Theorem 12, one has

d∗
[

H̄t,Ū ,Ht,U

]

≤ r(t, t0, w0), for all t ∈ I and Ū(t),U(t) ∈ Uac

provided d∗
[

H̄0,H0

]

≤ w0.

We suppose that the motions of flying-objects for instance, airplanes, mis-
siles..., can be described by FCSDS (1) and H̄t,Ū ,Ht,U are sets of positions of

flyingobjects at the time t for Ū ,U , respectively. One can estimate the sets of
positions of flyingobjects at the time t and compare the set of positions of flyin-
gobjects at time t H̄t,Ū to the counterpart Ht,U . In practice, these estimations
are useful and can be applied.

A function Y ǫ(t) = Y (t, t0,Y 0,U(t), ǫ), ǫ > 0, is said to be an ǫ-approximate
solution of (1) if Y ǫ ∈ C1

[

I, Lm
2

]

, Y ǫ(t0) = Y 0 and ρ
[

Y ′
ǫ(t),F (t,Y ǫ(t),U(t))

]

≤
ǫ, t ≥ t0.

In the case ǫ = 0,Y ǫ=0(t) is a solution of (1).
In the following Theorems 13-14, we compare solutions and ǫ- approximate

solution of (1) with the same control. The proof of Theorems 13-14 are similar
to the ones of Theorems 11-12. So we omit the details.

Theorem 13. Assume that F is m.s. continuous and

ρ
[

F (t,X,U),F (t,Y ,U)
]

≤ g(t, ρ[X,Y ]), (20)

for (t,X,U), (t,Y ,U) ∈ I × Lm
2 × L

p
2 where g ∈ C

[

R+ × R+,R+

]

. Suppose
further that the maximal solution r(t) = r(t, t0, w0, ǫ) of the scalar differential
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equation

w′ = g(t, w) + ǫ, w(t0) = w0 ≥ 0

exists for t ∈ I.

Then, if X(t) = X(t, t0,X0,U(t)) is a solution of (1) such that X(t0) = X0

and Y ǫ(t) = Y (t, t0,Y 0,U(t), ǫ) is an ǫ-approximate solution of (1) such that
Y ǫ(t0) = Y 0; X0,Y 0 ∈ Lm

2 existing for t ∈ I, one has

ρ
[

X(t),Y ǫ(t)
]

≤ r(t, t0, w0, ǫ), for all t ∈ I and U(t) ∈ Uac (21)

provided ρ
[

X0,Y 0

]

≤ w0.

Let Hǫ
t,U = {Y ǫ(t) = Y (t,Y 0,U(t), ǫ) is an ǫ−approximate solution of (1) |

Y 0 ∈ H̄0} be the cross-area of the sheaf-solution of ǫ-approximate solutions
Y ǫ(t). Then one has the following corollary.

Corollary 6. Under assumptions of Theorem 11, one has

d∗
[

Hǫ
t,U ,Ht,U

]

≤ r(t, t0, w0, ǫ), for all t ∈ I and U(t) ∈ Uac

provided d∗
[

H̄0,H0

]

≤ w0.

Using the weaker assumptions than those of Theorem 13, one has the fol-
lowing

Theorem 14. Assume that F is m.s. continuous and

lim sup
h→0+

1

h

{

ρ [X + hF (t,X,U),Y + hF (t,Y ,U)]−ρ[X,Y ]
}

≤ g(t, ρ[X,Y ]),

(22)

for (t,X,U), (t,Y ,U) ∈ I × Lm
2 × L

p
2 where g ∈ C

[

R+ × R+,R+

]

. Suppose
further that the maximal solution r(t) = r(t, t0, w0, ǫ) of the scalar differential
equation

w′ = g(t, w) + ǫ, w(t0) = w0 ≥ 0

exists for t ∈ I.

Then, if X(t) = X(t, t0,X0,U(t)) is a solution of (1) such that X(t0) = X0

and Y ǫ(t) = Y (t, t0,Y 0,U(t), ǫ) is an ǫ-approximate solution of (1) such that
Y ǫ(t0) = Y 0; X0,Y 0 ∈ Lm

2 existing for t ∈ I, one has

ρ
[

X(t),Y ǫ(t)
]

≤ r(t, t0, w0, ǫ), for all t ∈ I and U(t) ∈ Uac, (23)

provided ρ
[

X0,Y 0

]

≤ w0.

A simple example illustrating condition (22) of Theorem 14 is the follow-
ing:
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Example 4. Consider the systems in Example 2. It is easy to compute

lim sup
h→0+

1

h

{

ρ [X + hF (t,X ,U),Y + hF (t,Y ,U)]−ρ[X,Y ]
}

≤ a(t)ρ
[

X ,Y
]

.

Then, condition (22) of Theorem 14 holds for g(t, w) = a(t)w.

The direct consequence of Theorem 14 is the following:

Corollary 7. Under assumptions of Theorem 14, one has

d∗
[

Hǫ
t,U ,Ht,U

]

≤ r(t, t0, w0, ǫ), for all t ∈ I and U(t) ∈ Uac

provided d∗
[

H̄0,H0

]

≤ w0.

5. Conclusion

(i) The paper introduces FCSDS, which are a combination of fuzziness and ran-
domness. A simple result on existence of solutions is given. The continuous
dependence of solutions on initials and controls are studied and similar proper-
ties of approximate solutions and sheaf-solutions are investigated. Some simple
examples are given to illustrate the results.
(ii) It is difficult to show existence for the Hukuhara difference of two fuzzy
sets, the Hukuhara derivative is restrictive. We shall discuss some properties of
FCSDS with other definitions of derivatives, for instance, definition of derivative
based on support-functions in future studies.

Both of fuzzy and stochastic theories have their merits and defects. Their
study carries with it great promise.
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