PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Salinity using Interaction Mangrove Plants and Bacteria in Batch Reed Bed System Reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current method of seawater bio-desalination can effectively provide freshwater. This method works by separating the salt contained in water into clean water with a lower salinity. In this study, the researchers conducted an experiment of the bio-desalination method by combining mangrove plant and Vibrio alginolyticus bacteria as well as the presence of a filter layer component composed of sand and gravel in red beed system reactor. The concept of phytotechnology was to utilize plants as environmental technology capable of solving environmental problems. In contrast, the term phytoremediation was used to denote the process of plants absorb, take, change and release contaminants from one medium to another. The purpose of this study was to determine the reduction of salinity on the mangrove plant Rhizophora mucronata (Rm) and Avicennia marina (Am) with the addition of Vibrio alginolyticus (Va) bacteria in the bio-desalination process using a reed bed system. This study combines plants and bacteria for artificial saline desalination processes. The compounds contained in plants are absorbed in the form of cations or anions, while the addition of the bacteria was carried out to support the process of salt absorption in plants. The results of this study indicated a percentage of salinity decreasing up to the last day of experiment. The results showed the percentage of salinity removal at the last day reaching 49.16%, and 40.58% in reed bed reactor with Avecennia marina and Vibrio alginolyticus of 15‰ and 25‰, respectively. Meanwhile, the percentage of salinity using Rhizophora mucronata showed 64.68% and 40.18% in in reed bed reactor with Rhizophora mucronata and Vibrio alginolyticus of 15‰ and 25‰, respectively. The removal of salinity also occured in the control reactor, containing only reed bed system without plant, reaching 57.36% and 58.41% in initial salinity of 15‰ and 25‰. All treatment reactors exhibited high salinity removal. It showed that the all concentrations of salinity were below 4‰ at Day 2 of reactor operation. It suggested that the process of desalination occurred in the entire reactor treatment. In conclusion, the reed bed system reactor can be used to treat saline water but the process of absorption of salts with mangrove plant and addition of Vibrio alginolyticus can be more stable.
Słowa kluczowe
Rocznik
Strony
84--93
Opis fizyczny
Bibliogr. 56 poz., rys.
Twórcy
  • Department of Environmental Engineering, Faculty of Civil, Environmental and Geo Engineering, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, 60111 Surabaya, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Environmental and Geo Engineering, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, 60111 Surabaya, Indonesia
Bibliografia
  • 1. Anantluikrishnan, T.N. 1982. Bioresources Ecology. Oxford & IBH, New Delhi.
  • 2. Bahlo, K., Wach, G. 1995. Naturnahe Abwasserreinigung – Planung und Bau von Pflanzen kläranlagen Ökobuch Verlag. Staufen bei Freiburg, 3th. Edition.
  • 3. Brownell, P.F. 1995. The function of sodium as micro nutrients in plants. In: F.B. Salisbury & C.W. Ross, Plant Physiology, D.R Translation. Lukman & Sumaryono. IT Publisher Bandung.
  • 4. Chester, R. 1989. Marine Geochemistry. Unwin Hyman, London.
  • 5. Clough, B.F. 1984. Growth and salt balance of the mangroves Avicennia marina (Forsk) Vierh. And Rhizophora sty/osa Griff. in relation to salinitity. Aust. J. Plant Physiol., 11, 419–430.
  • 6. Cooper, P. 1999. A Review of the Design and Performance of Vertical-Flow and Hybrid Reed Bed Treatment Systems. Water Science and Technology 40(3), 1–9.
  • 7. Dwidjoseputro, D. 1994. Pengantar Fisiologi Tumbuhan. PT. Gramedia, Jakarta.
  • 8. Peters E.C., N.J Gassman, J.C. Fiman R.H. Richmond and E.A. Power, 1997. ‘Ecotoxicology Of Tropical Marine Ecoystem, Env.Toxicol Chem, 16, 12–40.
  • 9. Eckenfelder W. Weslwy, 1989, Industrial Water Pollution Control, Second Edition, McGraw-Hill Book Company.
  • 10. Farahbakhshazad, N, Morrison, G.M. 1998. Subsurface Macrophyte Systems in Wastewater Treatment. Vatten, 54, 41–51.
  • 11. Flowers, T.J., P.F. Troke & A.R. Yeo. 1977. The mechanism of salt tolerance in halophytes. Ann. Rev. Plant Physiol., 28, 89–121.
  • 12. Farhan Isbir dan Razif M. 2017. Allowance for Zn metal concentrations using Mangrove Avicennia marina. Technical Journal of ITS vol 6 no 2. Department of Environmental Engineering. ITS
  • 13. Greenway, H. 1973. Salinity plant, growt and metabolism. J. Inst. Aust. Agric. Sci., 39, 24–34.
  • 14. Hegemeyer, J. 1997. Salt. In: Prasad, M.N.V. (ed.), Plant Ecophysiology. John Wiley & Sons, Inc. New York, 173–206.
  • 15. HaIjadi, W. 1990. Basic Analytical Chemistry, PT. Gramedia, Jakarta.
  • 16. Halverson, Nancy V. 2004. Review of Constructed Subsurface Flow vs. Surface Flow Wetlands, U.S. Department of Energy, Springfield, USA.
  • 17. Hammer, D.A. (ed). 1989. Constructed Wetlands for Wastewater Treatment: Municipal, Industrial and Agricultural. Lewis Publishers,Inc: Chelsea, Michigan.
  • 18. Imam Ghozali dan Fuad. 2008. Structural Equation Modeling. Semarang: Badan Penerbit Universitas Diponegoro.
  • 19. Kajumulo, A. 2008. Constructed Wetlands Manual. United Nations Human Settlements Programme.
  • 20. Khiatuddin, M. 2003. Melestarikan Sumber Daya Air Dengan Teknologi Rawa Buatan.
  • 21. Kurniawan, S.B., Purwanti, I.F. Titah, H.S. 2018. The Effect of pH and Aluminium to Bacteria Isolated from Aluminium Recycling Industry. Journal of Ecological Engineering,19(3), 154–161.
  • 22. MaI, K.H. 1982. Ecology of coastal water. Studies in Ecology, vol. 5. University of California Press, Berekeley-California.
  • 23. Mangkoedihardjo, S. 2008. Fitotechnology Integrity in Environmental Sanitation for Sustainable Development. Speech Manuscript Inauguration of Professor of Environmental Sanitation and Phytotechnology. Faculty of Civil Engineering and Planning, Environmental Engineering Department. Sepuluh Nopember Institute of Technology Surabaya. January 26, 2008.
  • 24. Mic Millan, C. 1974. Salt toleranceof mangroves and submerged aquaric plants. Dalam R.J. Reimold & W.H. Queen (penyunting) Ecology of Halophytes. Academic Press, New York.
  • 25. Metcalf & Eddy. 1993. Wastewater Engineering Treatment Disposal Reuse, McGraw-Hill Inc., New York.
  • 26. Nybakken, I.W. 1992. Marine Biology: An ecological approach. Translation M. Eidman, Koesbiono, D.G. Bengen, M, Hutomo & S. Sukardjo. PT. Gramedia, Jakarta.
  • 27. Piper, C.S. 1947. Soil and Plant Analysis. Interscience Publishers, New York.
  • 28. Platzer, C. 1998. Entwicklung eines Bemessungsansatzes zur Stickstoffelimination in Pflanzenkläranlagen Dissertation, Institut für Siedlungswasserwirtschaft. TU, Berlin.
  • 29. Prawiranata, W.,S. Harran & P. Tjondronegoro. 1995. Basics of Plant Physiology, JId. 2. Department of Botany, FMIPA-IPB, Bogor.
  • 30. Purwanti, I,F., Anjasmara I,R., and Suharmadi, 2006. Groundwater salinity modeling in East Surabaya. Proceedings of the National Seminar on Technology Management III. Department of Environmental Engineering, ITS, Surabaya.
  • 31. Reed S.C., Crites R.W., Middlebrooks E.J. 1995. Natural Systems for Waste Management and Treatment. 2nd ed., McGraw-Hill Inc., New York.
  • 32. Reno, C.E. 1970. Investigating Water Problems: A Water Analysis Manual. La Motte Chemical Product, Maryland.
  • 33. Respati Bintang dan Sulistiyaning Harmin. 2017 Ability of Avecianna Alba to Reduce Copper (Cu) Concentration in Wonorejo River Estuary, Surabaya. Technical Journal of ITS vol 6 no 2. Department of Environmental Engineering. ITS.
  • 34. Saeni, M.S. 1999. Seawater Desalination with Mangrove Plants. Patimura University. Ambon
  • 35. Saeni, M.S. 1986. The ability of sand, palm fiber and charcoal filters to improve the physical and chemical quality of the Ciliwung watershed. Doctoral Thesis. PascasaIjana Faculty, Bogor Agricultural Institute.
  • 36. Saeni, M.S. 1989a. Physical Chemistry I. PAU IImu Hayat-IPB, Bogor.
  • 37. Saeni, M.S. 1989b. Chemical environment. PAU IImu Hayat-IPB, Bogor.
  • 38. Salisbury, F.B. & C.W. Ross. 1995. Plant Physiology, Jld. 1. Translation D.R. Lukman & Sumaryono.Perberbit ITB, Bandung.
  • 39. Sarifah H., et al. 2017. Analysis of Heavy Metal Content of HG and Cu Dissolved in Wonorejo Coastal Waters, East Coast Surabaya. Journal of Geography Education. Brawijaya University.
  • 40. Scholander, P.F. 1968. How mangroves desaline seawater. Physiol. Plant., 21:251–261.
  • 41. Scholander, P.F., H.T. Hammel, E. Hemmingsen, &. Carey. 1962. Salt balance in mangroves. Plant Physiol., 37, 722–729.
  • 42. Soerianegara, I. 1990. The rational use of mangroves for various purposes. In the Southeast Sulawesi Coastal Resources Potential. Work Gathering Proceedings. Research Institute for Balitbang Beach Cultivation in Agriculture, Ministry of Agriculture.
  • 43. Sugiarto, A. 1984. The mangroves ecosystem in Indonesia, its problems and management. Dalam H.J. teas (penyunting). Physiology and management of mangroves. Dr. W. Junk Publishers, The Hague.
  • 44. Suriawiria, U. 1993. Mikrobiologi Air. Penerbit Alumni: Bandung
  • 45. Taheri Reza, DKK. 2016. Biodesalination – On harnessing the potential of nature’s desalination processes. IOP Publishing Ltd.
  • 46. Taheria, R., Razmjoua, A., Szekelyb, G., Houc, J., Ghezelbash, R. 2016. Biodesalination – on harnessing the potential of nature’s desalination processes. IOP Publishing Ltd.
  • 47. Tchobanoglous, George dan Franklin L. Burton, 2003, Wastewater Engineering Treatment, Disposal and Reuse fourth edition, Mc. Graw Hill Inc, Singapore
  • 48. Terry, N. 1977. Photosysthesis, growth, and the role of chloride. Plant Physio., 60, 69–15.
  • 49. Titah H.S., et al., 2018a. Preliminary Phytotoxicity Test On Salinity Against Mangrove Plants Of Rhizophora Mucronate. Department of Environmental Engineering, ITS, Surabaya.
  • 50. Titah H.S., et al.,. 2018b. Range Finding Phytotoxicity Test Osf Salinity On Avicennia Marina As The Step On Bio-Desalination Technology. Department of Environmental Engineering, ITS, Surabaya.
  • 51. Titah, H.S., Abdullah, S.R.S., Idris, M., Anuar, N., Basri, H. and Mukhlisin, M. 2013. Effect of applying rhizobacteria and fertilizer on the growth ofLudwigia octovalvis for arsenic uptake and accumulation inphytoremediation. Ecological Engineering, 58, 303–313.
  • 52. Titah H.S, Pratikno, H., Chimayati, R.L 2018. Range Finding Phytotoxicity Test of Salinity on Avicennia Marina as The Step On Bio-Desalination Technology. International International Conference Science & Technology – ICST, Faculty of Science & Technology Airlangga University.
  • 53. Titah H.S, Purwanti, I.F., Pratikno, H., Chimayati, R.L., Handayanu. 2019. Preliminary Phytotoxicity Test on Salinity Against Mangrove Plants of Rhizophora Mucronate. Journal of Ecological Engineering, 20(3), 126–134.
  • 54. Tjandhana & E. Punvanto 1995. Indonesian mangrove forests. Jungle Ambassadors 177–178 / XX:2–9
  • 55. Tomlinson, P.B. 1986. The botany of mangroves. Cambridge University Press, Cambridge.
  • 56. Vymazal J., Brix H., Cooper P.F., Green M.B., Haberl R. 1998. Constructed Wetlands for Wastewater Treatment in Europe. Backhuys Publishers: Leiden.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-051e27fd-3685-4aee-a1af-7eef315261f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.