Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Flocculation is crucial for the treatment of coal tailings in industries. In this paper, the effects of shear-induced breakage and reflocculation of the floc, settling, and dewatering of coal tailings were investigated. The results show that as shear strength increases, the settling velocity of flocculated tailings decreases. A shear rate of 200 rpm (170.6 s-1) leads to the loss of half the settling velocity. However, at high dosage cases, 200 rpm-300 rpm shear could improve the clarity of the supernatant. Small particles are flocculated preferentially, especially for particles below 10 µm. With the increase in dosage, the critical particle size for the occurrence of flocculation increases. The chaos index proposed can quantitatively reflect the degree of flocculation or reflocculation of coal tailings. At high dosage conditions, shear could enhance the dewatering performance of flocs by reconstructing the filter cake. Controlling the structure of flocs by dosage and shear strength can help obtain appropriate settling, clarifying, and dewatering performance of coal tailings.
Słowa kluczowe
Rocznik
Tom
Strony
363--373
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
- Department of mineral processing engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China, 030024
autor
- Department of mineral processing engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China, 030024
autor
- Department of mineral processing engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China, 030024
autor
- Department of mineral processing engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China, 030024
autor
- Department of mineral processing engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China, 030024
autor
- Department of mineral processing engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China, 030024
Bibliografia
- ALAM, N., OZDEMIR, O., HAMPTON, M. A., NGUYEN, A. V. 2011. Dewatering of coal plant tailings: Flocculation followed by filtration. Fuel. 90, 26-35.
- BASEDOW, A., M. EBERT, K. H., HUNGER, H. 1979. Effects of mechanical stress on the reactivity of polymers: Shear degradation of polyacrylamide and dextran. Macromol. Chem. Phys. 180, 411-427.
- BLANCO, A., NEGRO, C., FUENTE, E., TIJERO, J. 2005. Effect of shearing forces and flocculant overdose on filler flocculation mechanisms and floc properties. Ind. Eng. Chem. Res. 44, 9105-9112.
- CHENG, W. P., CHANG, J. N., CHEN, P. H., YU, R. F., HUANG, Y. W., 2010. Monitoring floc formation to achieve optimal flocculation in water treatment plants. Environ. Eng. Sci. 27, 523-530.
- CIFTCI, H., ISıK, S. 2017. Settling characteristics of coal preparation plant fine tailings using anionic polymers. Korean J.Chem. Eng. 34, 1-7.
- DROPPO, I., G. EXALL, K., STAFFORD, K. 2008. Effects of chemical amendments on aquatic floc structure, settling and strength. Water Res. 42, 169.
- FAN, Y., DONG, X., LI, H. 2015. Dewatering effect of fine coal slurry and filter cake structure based on particle characteristics. Vacuum. 114, 54-57.
- GHOBAEIYEH, F. V. 2013. Effect of Laminar Shear on the Aggregate Structure of Flocculant-dosed Kaolinite Slurries, University of Alberta (Canada).
- HANSDAH, P., KUMAR, S., MANDRE, N. R. 2017. Dewatering performance of coal fines refuse slurry and development of the water recovery index. Energy Sources, Part A. 39, 1565-1571.
- HE, J., PANG, H., ZHENG, Y., JIANG, T., XIN, Z., ZHANG, P. 2018. Breakage–reflocculation implemented by two-stage shear for enhancing waste-activated sludge dewaterability: Effects of shear condition and extracellular polymeric substances. Drying Technol. 36, 418-434.
- HE, W., NAN, J., LI, H., LI, S. 2012. Characteristic analysis on temporal evolution of floc size and structure in low-shear flow. Water Res. 46, 509-520.
- JARVIS, P., JEFFERSON, B., PARSONS, S. A. 2005. Measuring floc structural characteristics. Rev. Environ. Sci. Bio/Technol. 4, 1-18.
- JARVIS, P., JEFFERSON, B., GREGORY, J., PARSONS, S. A. 2005. A review of floc strength and breakage. Water Res. 39, 3121-3137.
- JUNG, S. J., AMAL, R., RAPER, J. A. 1996. Monitoring effects of shearing on floc structure using small-angle light scattering. Powder Technol. 88, 51-54.
- LI, S., LIAO, Y., LI, G., LI, Z., CAO, Y. 2017. Flocculating and dewatering performance of hydrophobic and hydrophilic solids using a thermal-sensitive copolymer. Water Sci. Technol. 76, 694-704.
- LI, S., MA, X., WANG, J., XING, Y., GUI, X., CAO, Y. 2020. Effect of polyethylene oxide on flotation of molybdenite fines. Miner. Eng. 146, 106146.
- LU, Y., WANG, X., LIU, W., LI, E., CHENG, F., MILLER, J. D. 2019. Dispersion behavior and attachment of high internal phase water-in-oil emulsion droplets during fine coal flotation. Fuel. 253, 273-282.
- MA, X., FAN, Y., DONG, X., CHEN, R., LI, H., SUN, D. 2018. Impact of Clay Minerals on the Dewatering of Coal Slurry: An Experimental and Molecular-Simulation Study. Minerals, 8, 400.
- MORUZZI, R. B., DE OLIVEIRA, A. L., DA, C. F., GREGORY, J., CAMPOS, L. C. 2017. Fractal dimension of large aggregates under different flocculation conditions. Sci. Total Environ. 609, 807-814.
- OFORI, P., NGUYEN, A. V., FIRTH, B., MCNALLY, C., OZDEMIR, O. 2011. Shear-induced floc structure changes for enhanced dewatering of coal preparation plant tailings. Chem. Eng. J. 172, 914-923.
- SABAH, E., ERKAN, Z. E. 2006. Interaction mechanism of flocculants with coal waste slurry. Fuel. 85, 350-359.
- WANG, C., HARBOTTLE, D., LIU, Q., XU, Z. 2014. Current state of fine mineral tailings treatment: A critical review on theory and practice. Miner. Eng. 58, 113-131.
- WANG, Z., NAN, J., JI, X., YANG, Y. 2018. Effect of the micro-flocculation stage on the flocculation/sedimentation process: The role of shear rate. Sci. Total Environ. 633, 1183-1191.
- XU, W., GAO, B. 2012. Effect of shear conditions on floc properties and membrane fouling in coagulation/ultrafiltration hybrid process—The significance of Alb species. J. Membr. Sci. 415, 153-160.
- YEUNG, A. K., PELTON, R. 1996. Micromechanics: a new approach to studying the strength and breakup of flocs. J. Colloid Interface Sci. 184, 579-585.
- YIN, W. Z., YANG, X. S., ZHOU, D. P., YAN-JUN, L. I., ZHEN-FU, L. Ü. 2011. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Trans. Nonferrous Met. Soc. China. 21, 652-664.
- YU, W., GREGORY, J., YANG, Y., SUN, M., LIU, T., LI, G. 2010. Effect of coagulation and applied breakage shear on the regrowth of kaolin flocs. Environ. Eng. Sci. 27, 483-492.
- ZHANG, H., YANG, L., ZANG, X., CHENG, S., ZHANG, X. 2019. Effect of shear rate on floc characteristics and concentration factors for the harvesting of Chlorella vulgaris using coagulation-flocculation-sedimentation. Sci. Total Environ. 688, 811-817.
- ZHANG, Z., NONG, H., ZHUANG, L., LIU, J. 2017. Effect of water hardness on the settling characteristics of coal tailings. Energy Sources, Part A. 39, 1317-1322.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0518f807-e24f-40ab-b402-f6a83f1d0b47