PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Practical approach to calculating the hydrodynamic oscillating loads of a ship propeller under non-uniform wake field

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Propellers usually operate in the ship’s stern, where the inflow of the non-uniform wake generates oscillating loads and changes the hydrodynamic performance. Therefore, determination of the forces on propellers and hydrodynamic performance due to a non-uniform wake field are the challenging problems for naval architects and hydrodynamists. The main objectives of the present study are to assess the hydrodynamic performance for a single blade and all the blades. The propeller is a B-series propeller under non-uniform wake field behind the Seiun-Maru (hereafter SM) ship hull. A practical approach is employed to calculate the hydrodynamic oscillating loads of the ship propeller under a non-uniform wake field. Results of the computations on the propeller behind the SM ship, due to a non-uniform wake field, are presented and analyzed using classical mathematical methods over a single cycle. The results show that a variation of thrust with the discussed parameters is the same as that shown for torque, also the blade-frequency of the total force, thrust and torque is an increasing function of radial sections, whereas these parameters decrease with increasing radial blade sections.
Rocznik
Strony
9--20
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Amirkabir University of Technology (AUT), Department of Maritime Engineering Hafez Ave, No. 424, P.O. Box 15875-4413, Tehran, Iran
Bibliografia
  • 1. Abbas, N., Kornev, N., Shevchuk, I. & Anschau, P. (2015) CFD prediction of unsteady forces on marine propellers caused by the wake nonuniformity and nonstationarity. Ocean Engineering 104, pp. 659–672.
  • 2. Abramowski, T. & Szelangiewicz, T. (2009) Numerical analysis of influence of ship hull form modification on ship resistance and propulsion characteristics. Part I: Influence of hull form modification on ship resistance characteristics. Polish Maritime Research 4(62), 16, pp. 3–8.
  • 3. Abramowski, T. & Szelangiewicz, T. (2010) Numerical analysis of influence of ship hull form modification on ship resistance and propulsion characteristics. Part II: Influence of hull form modification on wake current behind the ship. Polish Maritime Research 1(64), 17, pp. 3–9.
  • 4. Abramowski, T., Żelazny, K. & Szelangiewicz, T. (2010) Numerical analysis of influence of ship hull form modification on ship resistance and propulsion characteristics. Part III: Influence of hull form modification on screw propeller efficiency. Polish Maritime Research 1(64), 17, pp. 10–13.
  • 5. Alves Pereira, F., Di Felice, F. & Salvatore, F. (2016) Propeller cavitation in non-uniform flow and correlation with the near pressure field. Journal of Marine Science and Engineering 4(4), 70.
  • 6. Berger, S., Bauer, M., Druckenbrod, M. & Abdel-Maksoud, M. (2013) Investigation of Scale Effects on Propeller-Induced Pressure Fluctuations by a Viscous/Inviscid Coupling Approach. In Proceedings of the Third International Symposium on Marine Propulsors SMP’13, Tasmania, Australia, 5–8 May 2013, pp. 209–217.
  • 7. Calcagno, G., Di Felice, F., Felli, M. & Pereira, F. (2002) Propeller wake analysis behind a ship by stereo PIV. 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan, 8–13 July.
  • 8. Carlton, J.S. (2013) Marine Propeller and Propulsion. 3rd Ed., Butterworth-Heinemann.
  • 9. Gaafary, M.M., El-Kilani, H.S. & Moustafa, M.M. (2011) Optimum design of B-series marine propellers. Alexandria Engineering Journal 50, 1, pp. 13–18.
  • 10. Ghassemi, H. (2009) The effect of wake flow and skew angle on the ship propeller performance. Scientia Iranica, Transaction B: Mechanical Engineering 16(2), pp. 149–158.
  • 11. Greco, L., Muscari, R., Testa, C. & Di Mascio, A. (2014) Marine propellers performance and flow-field prediction by a free-wake panel method. Journal of Hydrodynamics B, 26(5), pp. 780–795.
  • 12. Guo, C., Wu, T., Zhang, Q., Luo, W. & Su, Y. (2017) Numerical simulation and experimental studies on aft hull local parameterized non-geosim deformation for correcting scale effects of nominal wake field. Brodogradnja 68(1), pp. 77–96.
  • 13. Ji, B., Luo, X., Peng, X., Wu, Y. & Xu, H. (2012a) Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake. International Journal of Multiphase Flow 43, pp. 13–21.
  • 14. Ji, B., Luo, X., Wu, Y., Peng, X. & Xu, H. (2012b) Partially-Averaged Navier–Stokes method with modified k–ε model for cavitating flow around a marine propeller in a non-uniform wake. International Journal of Heat and Mass Transfer 55(23), pp. 6582–6588.
  • 15. Kadoi, H., Okamoto, M. & Suzuki, S. (1980) Wake distributions behind container ship models in the cavitation tunnel. Papers of Ship Research Institute 17(3), pp. 261–271.
  • 16. Kamarlouei, M., Ghassemi, H., Aslansefat, K. & Nematy, D. (2014) Multi-objective evolutionary optimization technique applied to propeller design. Acta Polytechnica Hungarica 11, 9, pp. 163–182.
  • 17. Kim, S.Y. & Moon, B.Y. (2006) Wake distribution prediction on the propeller plane in ship design using artificial intelligence. Ships and Offshore Structures 1:2, pp. 89–98.
  • 18. Kleinwächter, A., Hellwig-Rieck, K., Heinke, H.J. & Damaschke, N.A. (2017) Full-scale total wake field PIV-measurements in comparison with ANSYS CFD calculations: a contribution to a better propeller design process. Journal of Marine Science and Technology 22(2), pp. 388–400.
  • 19. Kumar, S., Nagarajan, V. & Sha, O.P. (2017) Measurement of flow characteristics in propeller slipstream of a twin propeller twin rudder model ship. International Shipbuilding Progress 63(1–2), pp. 1–40.
  • 20. Mahmoodi, M., Ghassemi, H. & Nowruzi, H. (2018) Obtaining mathematical functions of the propeller thrust and torque coefficients fluctuations at non-uniform wake flow including geometry effects. Mechanics & Industry 19, 2, 205.
  • 21. Martin, J.E., Michael, T. & Carrica, P.M. (2015) Submarine maneuvers using direct overset simulation of appendages and propeller and coupled CFD/potential flow propeller solver. Journal of Ship Research 59(1), pp. 31–48.
  • 22. Pecoraro, A., Di Felice, F., Felli, M., Salvatore, F. & Viviani, M. (2006) Propeller-hull interaction in a single-screw vessel. In Proceedings of the Third International Symposium on Marine Propulsors SMP’13, Lauceston, Tasmania, Australia, May 2013, pp. 185–192.
  • 23. Shin, K.W., Regener, P.B. & Andersen, P. (2015) Methods for cavitation prediction on tip-modified propellers in ship wake fields. In Proceedings of the Fourth International Symposium on Marine Propulsors SMP’15, Austin, Texas, USA, June 2015, pp. 564–571.
  • 24. Starke, B., Windt, J. & Raven, H. (2006) Validation of viscous flow and wake field predictions for ships at full scale. 26th ONR Symposium on Naval Hydrodynamics, Rome, Italy, 17–22 September.
  • 25. Sun, S., Li, L., Wang, C. & Zhang, H. (2017) Numerical prediction analysis of propeller exciting force for hull–propeller–rudder system in oblique flow. International Journal of Naval Architecture and Ocean Engineering 10, 1, pp. 69–84.
  • 26. Taheri, R. & Mazaheri, K. (2013) Hydrodynamic Optimization of marine propeller using gradient and non-gradient based algorithms. Acta Polytechnica Hungarica 10, 3, pp. 221–237.
  • 27. Ueno, M. & Tsukada, Y. (2016) Estimation of full-scale propeller torque and thrust using free-running model ship in waves. Ocean Engineering 120, pp. 30–39.
  • 28. Vaz, G., Hally, D., Huuva, T., Bulten, N., Muller, P., Becchi, P., Herrer, J.L., Whitworth, S., Macé, R. & Korsström, A. (2015) Cavitating flow calculations for the E779A propeller in open water and behind conditions: code comparison and solution validation. In Proceedings of the Fourth International Symposium on Marine Propulsors SMP’15, Austin, Texas, USA, June 2015, pp. 344–360.
  • 29. Zou, D., Zhang, J., Ta, N. & Rao, Z. (2017) The hydroelastic analysis of marine propellers with consideration of the effect of the shaft. Ocean Engineering 131, pp. 95–106.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0518ae6f-e509-4e49-8b06-f91746333781
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.