Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
By comparing the results of a pilot study of the damping coefficient of a pneumatic tire carried out on a test bench, this study justifies the possibility of using the less time-consuming experimental resonance curve method instead of the dynamic loop method. A mathematical model of the vertical oscillations of a vehicle’s dynamic system “pneumatic wheel-suspension-sprung weight”was created on the test-bench, and an image of the amplitude-frequency characteristic of the sprung weight oscillation was obtained. The approaches and results of the pilot and analytical studies presented in the article aid the selection of the tire with the best damping properties. The use of the experimental resonance curve method to determine the damping characteristic of a vehicle’s tire is limited in the external frequency range of the resonant frequencies. In this case, we have to use the dynamic loop method.
Czasopismo
Rocznik
Tom
Strony
63--72
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Akaki Tsereteli State University; 59 Tamar Mepe, Kutaisi, 4600, Georgia
autor
- Akaki Tsereteli State University; 59 Tamar Mepe, Kutaisi, 4600, Georgia
autor
- Akaki Tsereteli State University; 59 Tamar Mepe, Kutaisi, 4600, Georgia
autor
- Akaki Tsereteli State University; 59 Tamar Mepe, Kutaisi, 4600, Georgia
autor
- Akaki Tsereteli State University; 59 Tamar Mepe, Kutaisi, 4600, Georgia
Bibliografia
- 1. Tarasik, V.P. Физические основы процесса демпфирования колебаний в системе подвески автомобиля. Вестник Белорусско-Российского университета. 2019. No. 1(62). P. 62-77. [In Russian: Physical foundations of the vibration damping process in the vehicle suspension system. Bulletin of the Belarusian-Russian University].
- 2. Жилейкин, М.М. & Котиев, Г.О. & Сарач, Е.Б. Разработка адаптивных законов управления двухуровневым демпфированием в подвеске быстроходных многоосных колесных машин. Журнал Автомобильных Инженеров. 2012. No. 72. P. 28-33. [In Russian: Development of adaptive laws for controlling two-level damping in the suspension of high-speed multi-axle wheeled vehicles. Journal of Automotive Engineers].
- 3. Kim, S. & Savkoor, A. The contact problem of in-plane rolling of tires on a flat road. Vehicle System Dynamics. 1997. Vol. 27. P. 189-206.
- 4. Périsse, J. A Study of radial vibrations of a rolling tyre for tyre-road noise characterisation. Mechanical Systems and Signal Processing. 2002. Vol. 16(6). P. 1043-1058.
- 5. Mark, J. & Erman, B. & Roland, M. The Science and Technology of Rubber. Academic Press. 2013.
- 6. Wheeler, R. & Dorfi, H. & Keum, B. Vibration modes of radial tires: measurement, prediction, and categorization under different boundary and operating conditions. Technical Report. SAE Technical Paper. 2005. No. 2005-01-2523.
- 7. Mazur, V.V. Экспериментальная оценка упругих и демпфирующих свойств колёс повышенной безопасности. Научно-технический вестник Брянского Государственного Университета. 2019. No. 1. P. 95-104. [In Russian: Experimental estimation of elastic and damping properties of higher safety wheels. Scientific and technical bulletin of the Bryansk State University].
- 8. Rykov, S.P. & Tarasyuk, V.N. Исследование входных характеристик пневматических шин. Поглощающая cпособность. Системы. Методы. Технологии. 2010. No. 2(6). P. 19-30. [In Russian: Investigation of the input characteristics of pneumatic tires. Absorption ability. System. Methods. Technology].
- 9. Konieczny, L. Analysis of simplifications applied in vibration damping modelling for a passive car shock absorber. Shock and Vibration. Vol. 2016. Article ID 6182847.
- 10. Shuguang, Z. & Wenku, S. & Zhiyong, C. Modeling and parameter identification of MR damper considering excitation characteristics and current. Shock and Vibration. Vol. 2021. Article ID 6691650.
- 11. Barethiye, V.M. & Pohit, G. & Mitra, A. Analysis of a quarter car suspension system based on nonlinear shock absorber damping models. International Journal of Automotive and Mechanical Engineering. 2017. Vol. 14. No. 3. P. 4401-4418.
- 12. Reina, G. & Delle Rose, G. Active vibration absorber for automotive suspensions: a theoretical study. Int. J. Heavy Vehicle Systems. 2016. Vol. 23. No. 1. P. 21-39.
- 13. Gursky, N.N. Моделирование, анализ и оптимизация колебаний многоопорных машин. III Белорусского конгресса по теорет. и прикл. Механике. Belarus, Minsk, 16-18 Oct. 2007. P. 184-191. [In Russian: Modeling, analysis and optimization of oscillations of multi-support machines. III Belarusian Congress on theor. and app. mechanics].
- 14. Thite, A.N. & Coleman, F. & Doody, M. & Fisher, N. Experimentally validated dynamic results of a relaxation-type quarter car suspension with an adjustable damper. Journal of Low Frequency Noise, Vibration and Active Control. 2017. Vol. 36(2). P. 148-159.
- 15. Martin, V. & Lumír, H. & Bureček, A. Structural damping of mechanical vibration. Manufacturing Technology. 2016. Vol. 16. No. 6. ISSN: 1213-2489.
- 16. Svoboda, M. & Schmid, V. & Sapieta, M. & Jelen, K. & Lopot, F. Influence of the damping system on the vehicle vibrations. Journal Manufacturing Technology. 2019. Vol. 19. No. 6. P.1034-1039.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0510df3e-3ce8-4861-a972-101df6dcb63b