PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-objective optimisation of the electric wheelchair ride comfort and road holding based on jourdain’s principle model and genetic algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper addresses the multi-body modelling of an electric wheelchair using Jourdain’s principle. First, a description of the adopted approach was presented. Next, the mathematical equations were developed to obtain the dynamic behaviour of the concerned system. The numerical computation was performed with MATLAB (matrix laboratory: a high performance language of technical computing) and validated by MBD (Multi-Body Dynamics) for Ansys, a professional multi-body dynamics simulation software powered by RecurDyn. Afterwards, the model was treated as an objective function included in genetic algorithm. The goal was to improve the ride quality and the road holding as well as the suspension workspace. The multi-objective optimisation aimed to reduce the Root-Mean-Square (RMS) of the seat’s vertical acceleration, the wheels load and the workspace modulus by varying the bodies’ masses, the spring-damper coefficients and the characteristics of the tires. Acceptable solutions were captured on the Pareto fronts, in contrast to the relatively considerable processing time involved in the use of a random road profile generated by the power spectral density (PSD). During the process, the compatibility and the efficiency of Jourdain’s equations were inspected.
Rocznik
Strony
58--69
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  • Faculty of Technology; Department of Mechanical Engineering, Mechanics of Structures and Solids Laboratory, University of Sidi Bel Abbes, BP 89, Cité Ben Mhidi, Sidi Bel Abbes 22000, Algeria
  • Faculty of Technology; Department of Mechanical Engineering, Mechanics of Structures and Solids Laboratory, University of Sidi Bel Abbes, BP 89, Cité Ben Mhidi, Sidi Bel Abbes 22000, Algeria
Bibliografia
  • 1. Ahmad S, Tokhi M, Toha S. Genetic Algorithm Optimisation for Fuzzy Control of Wheelchair Lifting and Balancing. Uksim European Symposium On Computer Modeling And Simulation. 2009.
  • 2. Anandan A, Kandavel A. Investigation and performance comparison of ride comfort on the created human vehicle road integrated model adopting genetic algorithm optimized proportional integral derivative control technique. Proceedings Of The Institution Of Mechanical Engineers Part K: Journal Of Multi-Body Dynamics. 2020; 234(2): 288-305.
  • 3. Balkwill J. Performance vehicle dynamics: Engineering and Applica-tions. Elsevier. 2018.
  • 4. Chen S, Shi T, Wang D, Chen J. Multi-objective optimization of the vehicle ride comfort based on Kriging approximate model and NSGA-II. Journal Of Mechanical Science And Technology. 2015; 29(3):1007-1018.
  • 5. Dad K, Khan M, Jie W, Lee M. A low cost genetic algorithm based control scheme for wheelchair control in hospital environment. Proceedings Of International Conference On Artificial Life And Robotics. 2016; 21:212-216.
  • 6. Deb K. Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, Ltd. 2001.
  • 7. Dodds C, Robson J. The description of road surface roughness. Journal Of Sound And Vibration. 1973; 31(2):175-183.
  • 8. Fossati G, Miguel L, Casas W. Multi-objective optimization of the suspension system parameters of a full vehicle model. Optimization And Engineering. 2018; 20(1):151-177.
  • 9. Garcia de Jalon J, Bayo E. Kinematic and dynamic simulation of multibody systems. Springer. 1984.
  • 10. Gill P, Murray W, Wright M. Practical optimization. SIAM. 2019.
  • 11. Hahn H. Rigid body dynamics of mechanisms. Springer. 2003.
  • 12. https://www.karmanhealthcare.com/product/xo-202/[online cit.: 2020.06.16].
  • 13. https://www.mathworks.com/help/gads/gamultiobj-algorithm.html. [online cit.: 2021.01.29].
  • 14. Hurel J, Mandow A, Garcia-Cerezo A. Nonlinear two-dimensional modeling of a McPherson suspension for kinematics and dynamics simulation. 12Th IEEE International Workshop On Advanced Motion Control (AMC). 2012.
  • 15. Jazar R. Vehicle dynamics – theory and application (3rd ed.). Springer. 2017.
  • 16. Jourdain P. Note on an Analogue of Gauss Principle of Least Constraint. The Quarterly Journal of Pure and Applied Mathematics. 1909; 40:153-157.
  • 17. Kane T. Dynamics of Nonholonomic Systems. Journal Of Applied Mechanics. 1961; 28(4):574-578.
  • 18. Kane T, Levinson D. The Use of Kane’s Dynamical Equations in Robotics. The International Journal Of Robotics Research. 1983; 2(3):3-21.
  • 19. Messac A. Optimization in practice with MATLAB for engineering students and professionals. Cambridge University Press. 2015.
  • 20. Nariman-Zadeh N, Salehpour M, Jamali A, Haghgoo E. Pareto optimization of a five-degree of freedom vehicle vibration model using a multi-objective uniform-diversity genetic algorithm (MUGA):Engineering Applications Of Artificial Intelligence. 2010; 23(4):543-551.
  • 21. Pacejka H, Besselink I. Tire and vehicle dynamics. Elsevier/BH. 2012.
  • 22. Papastavridis J. On Jourdain’s principle. International Journal Of Engineering Science. 1992; 30(2):135-140.
  • 23. Paulter N, Larson D, Blair J. The IEEE Standard on Transitions. Pulses. and Related Waveforms. Std-181-2003. IEEE Transactions On Instrumentation And Measurement. 2004; 53(4):1209-1217.
  • 24. Piedboeuf J. Kane’s equations or Jourdain’s principle?. Proceedings Of 36Th Midwest Symposium On Circuits And Systems. 1993.
  • 25. Reynoso-Meza G, Blasco X, Sanchis J, Herrero J. Comparison of design concepts in multi-criteria decision-making using level diagrams. Information Sciences. 2003; 221:124-141.
  • 26. Rill G. Road vehicle dynamics. CRC Press. 2012.
  • 27. Roberson R, Schwertassek R. Dynamics of Multibody Systems. Springer Berlin Heidelberg. 1988.
  • 28. Sankardoss V, Geethanjali P. Parameter estimation and speed control of a PMDC motor used in wheelchair. Energy Procedia. 2017; 117:345-352.
  • 29. Seifi A, Hassannejad R, Hamed M. Use of nonlinear asymmetrical shock absorbers in multi-objective optimization of the suspension system in a variety of road excitations. Proceedings Of The Institution Of Mechanical Engineers. Part K: Journal Of Multi-Body Dynamics. 2016; 231(2):372-387.
  • 30. Shabana A. Computational dynamics. John Wiley & Sons. 2010.
  • 31. Shirahatti A, Prasad P, Panzade P, Kulkarni M. Optimal design of passenger car suspension for ride and road holding. Journal Of The Brazilian Society Of Mechanical Sciences And Engineering. 2008; 30(1):66-76.
  • 32. Sinha B. Influence of road unevenness on road holding and ride comfort. Stockholm: Department of Machine element deesign. Royal Institute of Technology. 1973.
  • 33. Van der Sande T, Besselink I, Nijmeijer H. Rule-based control of a semi-active suspension for minimal sprung mass acceleration: design and measurement. Vehicle System Dynamics. 2016; 54(3):281-300.
  • 34. Vingback J, Jeppsson P, van Deventer J. Evaluating Ride Comfort for Wheelchair Passengers Utilizing a Motionbase Simulator. 16Th International Conference On Advanced Vehicle Technologies; 11Th International Conference On Design Education; 7Th Frontiers In Biomedical Devices. 2014; 3.
  • 35. Wang S, Zhao L, Hu Y, Yang F. Vibration Characteristics Analysis of Convalescent-Wheelchair Robots Equipped with Dynamic Absorbers. Shock And Vibration. 2018; 1-16.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05068b8c-bd5e-48a3-8136-efbf6a9dbaae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.