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Abstract: The paper addresses the multi-body modelling of an electric wheelchair using Jourdain’s principle. First, a description  
of the adopted approach was presented. Next, the mathematical equations were developed to obtain the dynamic behaviour  
of the concerned system. The numerical computation was performed with MATLAB (matrix laboratory: a high performance language  
of technical computing) and validated by MBD (Multi-Body Dynamics) for Ansys, a professional multi-body dynamics simulation software 
powered by RecurDyn. Afterwards, the model was treated as an objective function included in genetic algorithm. The goal was to improve 
the ride quality and the road holding as well as the suspension workspace. The multi-objective optimisation aimed to reduce  
the Root-Mean-Square (RMS) of the seat’s vertical acceleration, the wheels load and the workspace modulus by varying the bodies’ 
masses, the spring-damper coefficients and the characteristics of the tires. Acceptable solutions were captured on the Pareto fronts,  
in contrast to the relatively considerable processing time involved in the use of a random road profile generated by the power spectral  
density (PSD). During the process, the compatibility and the efficiency of Jourdain’s equations were inspected. 
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1. INTRODUCTION 

Recent systems are complex and consist of many bodies in-
terconnected by joints and elements of force. These systems are 
called multi-body systems in the literature. The dynamic equations 
that generate the motion of these systems are highly non-linear 
and thus in most cases cannot be solved by a closed analytical 
form, making the numerical solution of the resulting equations 
indispensable. Therefore, a proper choice of the formalism of 
multi-body modelling can improve numerical efficiency. 

In 1909, Jourdain [16] had an intention to find a bridge be-
tween d’Alembert’s principle and the Gauss principle of least 
constraint, and he did so by publishing a paper about a third 
principle of mechanics. This generalised form of d’Alembert’s 
principle uses virtual velocities instead of virtual displacements, 
and is applied to systems with differential nonholonomic con-
straints [27]. Papastavridis [22] has demonstrated that Jourdain’s 
principle results naturally from the total time differentiation of 
Lagrange’s principle and produces the correct equations of motion 
independently of any commutation assumptions. Inexplicably, this 
principle seems to be very little known, and also appears prone to 
be confused with Kane’s equations [17] presented in 1961 as “a 
general method for obtaining the differential equations of nonho-
lonomic systems”. Some authors state that Kane’s equations are 
merely a reformulation of the concepts Appell and Jourdain devel-
oped earlier, due to which Piedboeuf [24] has reviewed both 
Jourdain’s principle and Kane’s equations and demonstrated that 
the latter can be expressed as easily the former. Henceforth, 

Jourdain’s principle will be applied in modelling dynamical behav-
iour of mechanical systems such as a powered wheelchair. 

Electric wheelchairs are helpful for people unable to use a 
manual wheelchair, especially for larger distances or over rough 
terrain. In case a wheelchair is provided with a suspension, as 
shown in the example of Fig. 1, it will have an increased perfor-
mance. 

 
Fig. 1. The KARMAN XO-202 electric wheelchair [12] 

To improve its performance, an electric-powered wheelchair 
may be subject to different types of studies. Vingback et al. [34] 
have used a motion base simulator to facilitate fast and cost-
efficient development and adjustment of wheel suspension sys-
tems and parameters for increasing the ride comfort of wheel-
chair-seated passengers. Wang et al. [35] have compared the 
vibration isolation performances of the convalescent-wheelchair 
robot with and without a vibration-reducing device, and conducted 
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the sensitivity analysis of the vibration responses to the important 
dynamic parameters. Although there exist many works dealing 
with the development of active and semi-active suspension sys-
tems, such as the researches of Van der Sande et al. [33], Anan-
dan and Kandavel [2] and others [4, 8, 20, 29, 31] on multi-
objective optimisation related to passenger comfort and road 
holding of ground vehicles, few dealt with multi-objective optimisa-
tion of electric wheelchairs. The focus was on improving control 
automatisms using genetic algorithms, in contrast with the studies 
of Sankardoss and Geethanjali [28], Ahmad et al. [1] and Dad et 
al. [5]. However, there is a lack of powered wheelchair design 
optimisation that combines evolutionary algorithms and Jourdain’s 
equations. 

This article will provide a clear description of the multi-body 
modelling of an electric wheelchair according to Jourdain’s princi-
ple, from the generation of equations of motion to the numerical 
computation. Of particular interest are the interaction between the 
first-order ordinary differential equations (ODEs) and the non-
linearity of the forces applied by the suspension as well as the 
random road effect produced by the power spectral density (PSD). 
The validated model will be injected into an optimisation program 
in order to investigate its efficiency, robustness and rapidity as a 
function with multiple objectives. The choice will be on the genetic 
algorithm in the MATLAB Optimisation Toolbox to improve ride 
quality and road holding. The multi-objective optimisation will aim 
to reduce the Root-Mean-Square (RMS) of the seat’s vertical 
acceleration, the tires load and the suspension workspace modu-
lus by varying the bodies’ masses, the spring-damper coefficients 
and some parameters of the tires. The dominant objectives will be 
extracted, and the influence of the normalised variables will be 
examined. The reader will notice the frequent use of the prede-
fined functions of MATLAB, both in modelling and optimisation, 
the aim of which is to benefit from a combination between these 
tools and first-order differential equations by having a straightfor-
ward process. 

2. JOURDAIN’S PRINCIPLE OF VIRTUAL POWER 

According to Rill [26], a right-handed Cartesian coordinate 
system is fixed to the body in its centre of mass (CoG: Centre of 

Gravity). The position and the orientation of body 𝑖 with respect to 
the inertial reference frame 0 (RF0) is determined by the position 

vector 𝑟 and the rotation matrix 𝐴, respectively. 

𝑟0𝑖,0 = 𝑟0𝑖,0(𝑦)                                                                       (1) 

and  

 𝐴0𝑖,0 = 𝐴0𝑖,0(𝑦)                                                                       (2) 

where the generalised coordinates 𝑦1, 𝑦2, . . . , 𝑦𝑛 are collected in 
the vector 𝑦. The velocity of body 𝑖 in RF0 is  

𝑣0𝑖,0 =
𝑑

𝑑𝑡
𝑟0𝑖,0(𝑦) = ∑ 

𝑓
𝑚=1

𝜕𝑟0𝑖,0(𝑦)

𝜕𝑦𝑚
�̇�𝑚 = 𝑣0𝑖,0(𝑦, �̇�)          (3) 

The time derivative of 𝐴0𝑖. 𝐴0𝑖
𝑇  is a skew-symmetric matrix 

�̃�0𝑖,0 = [

0 −𝜔0𝑖,0(3) 𝜔0𝑖,0(2)

𝜔0𝑖,0(3) 0 −𝜔0𝑖,0(1)

−𝜔0𝑖,0(2) 𝜔0𝑖,0(1) 0
]                  (4) 

where the vector of angular velocity  

 𝜔0𝑖,0 = [𝜔0𝑖,0(1), 𝜔0𝑖,0(2), 𝜔0𝑖,0(3)]
𝑇

                                (5) 

For simplification, we replace by 𝑧, where 𝑧 = 𝐾(𝑦)�̇�, 

𝑧 = 𝑧(𝑦, �̇�), 𝑣0𝑖,0(𝑦, 𝑧) and 𝜔0𝑖,0(𝑦, 𝑧). The time derivative of 

velocities yields to 

𝑎0𝑖,0 = ∑ 
𝑓
𝑚=1

𝜕𝑣0𝑖,0(𝑦,𝑧)

𝜕𝑦𝑚
�̇�𝑚 + ∑ 

𝑓
𝑚=1

𝜕𝑣0𝑖,0(𝑦,𝑧)

𝜕𝑧𝑚
�̇�𝑚                (6) 

𝛼0𝑖,0 = ∑ 
𝑓
𝑚=1

𝜕𝜔0𝑖,0(𝑦,𝑧)

𝜕𝑦𝑚
�̇�𝑚 + ∑ 

𝑓
𝑚=1

𝜕𝜔0𝑖,0(𝑦,𝑧)

𝜕𝑧𝑚
�̇�𝑚               (7) 

The motion of one rigid body is described by Newton–Euler 
equations  

𝑚𝑖 . 𝑎0𝑖,0 = 𝐹𝑖,0                                                                       (8) 

 Θ𝑖,0. 𝛼0𝑖,0 + 𝜔0𝑖,0 × Θ𝑖,0. 𝜔0𝑖,0 = 𝑇𝑖,0                        (9) 

where 𝑚𝑖 is the mass of body 𝑖 and Θ𝑖,0 is the corresponding 

inertia tensor. The forces and torques for constrained systems are 

devoted to ones applied on body 𝑖 and others provided by 

constraints  

𝐹𝑖,0 = 𝐹𝑖,0
𝑎 + 𝐹𝑖,0

𝑐                                                                      (10) 

𝑇𝑖,0 = 𝑇𝑖,0
𝑎 + 𝑇𝑖,0

𝑐                                                                      (11) 

The partial velocities and partial angular velocities are 

arranged in the 3 × 𝑓 Jacobian matrices of translation and 

rotation, as under: 

𝜕𝑣0𝑖,0

𝜕𝑧
= [

𝜕𝑣0𝑖,0(𝑦,𝑧)

𝜕𝑧1
,
𝜕𝑣0𝑖,0(𝑦,𝑧)

𝜕𝑧2
, . . . ,

𝜕𝑣0𝑖,0(𝑦,𝑧)

𝜕𝑧𝑓
]                      (12) 

𝜕𝜔0𝑖,0

𝜕𝑧
= [

𝜕𝜔0𝑖,0(𝑦,𝑧)

𝜕𝑧1
,
𝜕𝜔0𝑖,0(𝑦,𝑧)

𝜕𝑧2
, . . . ,

𝜕𝜔0𝑖,0(𝑦,𝑧)

𝜕𝑧𝑓
]                     (13) 

Using the Jacobian matrices, the accelerations are obtained 

as: 

𝑎0𝑖,0 =
𝜕𝑣0𝑖,0

𝜕𝑧
�̇� + 𝑎0𝑖,0

𝑅                                                      (14) 

𝛼0𝑖,0 =
𝜕𝜔0𝑖,0

𝜕𝑧
�̇� + 𝛼0𝑖,0

𝑅                                                      (15) 

 The remaining terms in the accelerations are presented by 𝑅. 
It should be mentioned that the reaction terms are vanished. The 
first-order differential equation is 𝑀(𝑦)�̇� = 𝑞(𝑦, 𝑧), where 

𝑓 × 𝑓 mass matrix is defined by 

𝑀(𝑦) = ∑ 𝑘
𝑖=1 [

𝜕𝑣0𝑖,0
𝑇

𝜕𝑧
𝑚𝑖

𝜕𝑣0𝑖,0

𝜕𝑧
+

𝜕𝜔0𝑖,0
𝑇

𝜕𝑧
Θ𝑖,0

𝜕𝜔0𝑖,0

𝜕𝑧
]               (16) 

and the 𝑓 × 1 vector of generalised forces is given by 

𝑞(𝑦, 𝑧) = ∑ 𝑘
𝑖=1 [

𝜕𝑣0𝑖,0
𝑇

𝜕𝑧
𝐻1 +

𝜕𝜔0𝑖,0
𝑇

𝜕𝑧
𝐻2]                                 (17) 

where  

𝐻1 = 𝐹𝑖,0
𝑎 −𝑚𝑖 . 𝑎0𝑖,0

𝑅                                                               (18) 

and  

𝐻2 = 𝑇𝑖,0
𝑎 − Θ𝑖,0. 𝛼0𝑖,0

𝑅 − 𝜔0𝑖,0 × Θ𝑖,0. 𝜔0𝑖,0                         (19) 

3. DYNAMICAL MODEL OF THE ELECTRIC WHEELCHAIR 

3.1. Kinematics  

The Non-Linear Two-Dimensional Electric Wheelchair (NL2D-
EWC), presented in Fig. 2, consists of four rigid bodies: Chassis 
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or Sprung mass (S), Control arm (C), Front Tire (FT) and Rear 
Tire (RT). The motion of the system is described by four general-

ised coordinates y = (𝑧𝛾𝛽𝜑)𝑇  representing the vertical 
displacement of the Sprung mass, the rotation angle of the Con-
trol arm about the revolute joint Bc, the rotation angle of the FT 
about the revolute joint Bf and the rotation angle of the RT about 
the revolute joint Br, respectively. The tires’ deflections rsf and rsr, 
and the step inputs uf and ur of the road, are illustrated in Fig. 2. 

 
Fig. 2. The NL2D-EWC. FT, front tire; NL2D-EWC, non-linear  
            two-dimensional electric wheelchair; RT, rear tire 

The position, velocity and acceleration of the Sprung mass’ 
CoG are   

𝑝𝑠 =(
0
0

𝑏 + 𝑧
) , 𝑣𝑠 = (

0
0
�̇�
) , 𝑎𝑠 = (

0
0
�̈�
)                                (20) 

The distance b between the Sprung mass’ CoG and the 
ground, and the parameters l, d, a, n, rr0, rf0, h, f, d2 and e are 
shown in Fig. 2. The NL2D-EWC is not considered as a pitch-
plane model because there is no orientation for the Sprung mass. 
Therefore, the rotation matrix that describes the orientation of the 
Control arm with respect to the Sprung mass’ Reference Frame 
(SRF) is the same that describes it in RF0. 

𝐴𝑠
𝑐 = 𝐴0

𝑐 = [
cos𝛾 0 sin𝛾
0 1 0

−sin𝛾 0 cos𝛾
]                                         (21) 

and the angular velocity and angular acceleration are 

𝜔𝑐 =(
0
�̇�
0
) , and𝛼𝑐 = (

0
�̈�
0
)                                                   (22) 

The position vector is  

𝑝𝑐 = (
0
0

𝑏 + 𝑧
) + (

0
0
−𝑎
) + (

−𝑙cos𝛾
0

𝑙sin𝛾
)                                (23)  

The first two parts characterise the position of the revolute 
joint BC. The first and second derivatives yield to 

 𝑣𝑐 = (
0
0
�̇�
) + (

𝑙�̇�sin𝛾
0

𝑙�̇�cos𝛾
)                                                       (24)  

and the acceleration  

𝑎𝑐 = (
0
0
�̈�
) + (

𝑙�̈�sin𝛾
0

𝑙�̈�cos𝛾
) + (

𝑙�̇�2cos𝛾
0

−𝑙�̇�2sin𝛾
)                          (25)  

The orientation of the FT with respect to the RF0  
is determined by 

0
𝐹𝑇𝐴 = [

cos𝛽 0 sin𝛽
0 1 0

−sin𝛽 0 cos𝛽
]                                                  (26) 

and the momentary position is determined by 

𝑝𝐹𝑇 = (
0
0

𝑏 + 𝑧 − 𝑛
)                                                                (27)  

then the velocity and acceleration are given by 

𝜔𝐹𝑇 = (
0
�̇�
0

) , 𝛼𝐹𝑇 = (
0
�̈�
0

)                                                       (28) 

and  

 𝑣𝐹𝑇 = (
0
0
�̇�
) , 𝑎𝐹𝑇 = (

0
0
�̈�
)                                                       (29) 

for the RT  

0
𝑅𝑇𝐴 =  [

cos𝜑 0 sin𝜑
0 1 0

−sin𝜑 0 cos𝜑
]                                                (30)  

𝑝𝑅𝑇 = (
0
0

𝑏 + 𝑧 − 𝑎
) + (

−𝑑cos𝛾
0

𝑑sin𝛾
)                                    (31) 

The velocity and acceleration are  

 𝜔𝑅𝑇 = (
0
�̇�
0
) , 𝛼𝑅𝑇 = (

0
�̈�
0
)                                                     (32) 

and  

𝑣𝑅𝑇 = (
0
0
�̇�
) + (

𝑑�̇�sin𝛾
0

𝑑�̇�cos𝛾
)                                                   (33) 

𝑎𝑅𝑇 = (
0
0
�̈�
) + (

𝑑�̈�sin𝛾
0

𝑑�̈�cos𝛾
) + (

𝑑�̇�2cos𝛾
0

−𝑑�̇�2sin𝛾
)                  (34) 

According to Eqs (6) and (7) from the Jacobians, the partial 
velocities can be extracted from corresponding generalised 
velocities. 

3.2. Applied forces 

The complete force vector is populated from each body’s 
gravitational forces and translational forces of the spring-damper 
unit; finally, the tires’ longitudinal and vertical forces as it resumed 
is presented in Fig. 3 and Tab. 1. Translational springs are force 
elements in rigid-body systems. The force 𝐹𝑆 of a non-linear 
spring is defined by Hahn [11] as 

𝐹𝑆 = 𝐾𝑆.
𝑟𝐷𝐸,0

|𝑟𝐷𝐸,0|
. (|𝑟𝐷𝐸,0| − 𝑙0)                                               (35) 
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with a positive constant 𝐾𝑆 as the stiffness coefficient, 𝑙0 as the 

undeformed length of the spring and 𝑟𝐷𝐸,0 as the vector of the 

attachment points of the spring on the Sprung mass and the 
Control arm, the modulus of which is its deformed length. The 

force 𝐹𝑆 of the spring acts on both bodies in opposite directions 

where sign(𝐹𝑆) on the Sprung mass = –sign(𝐹𝑆) on the Control 
arm: 

 For |𝑟𝐷𝐸,0| − 𝑙0 > 0 the spring is under tension and the two 

bodies are pulled. 

 For |𝑟𝐷𝐸,0| − 𝑙0 < 0 the spring is under compression and the 

two bodies are pushed. 

 
Fig. 3. Contact pressure distribution: a) gap distance effect;  
            b) gap orientation effect Forces acting on the NL2D-EWC. FT,  
            front tire; NL2D-EWC, non-linear two-dimensional electric  
            wheelchair; RT, rear tire. 

For the translational damper, Hahn [11] defines the force 𝐹𝐷 

as 

𝐹𝐷 = 𝑁𝑆.
𝑟𝐷𝐸,0

|𝑟𝐷𝐸,0|
. |�̇�𝐷𝐸,0|                                                           (36) 

while NS is the suspension damping, �̇�𝐷𝐸,0 represents the first 

derivative of the deformable length, and the sign convention is as 

follow: 

 For �̇�𝐷𝐸,0 > 0 the damper forces exhibit a pull on the bodies. 

 For �̇�𝐷𝐸,0 < 0 the two bodies move towards each other, and 

the damper forces exhibit a push on the bodies.  

Finally, the primary force of the spring-damper unit can be 

found as 

𝐹𝑆𝐷 = 𝐹𝑆 + 𝐹𝐷                    (37) 

According to Pacejka and Besselink [21], the normal load 𝐹𝑧 
of the wheel can be calculated as a linear function of the radial tire 
deflection measured by the reduction of the tire radius from the 

unloaded value 𝑟0 to the loaded static radius 𝑟𝑠 . As long as the 

tires are in contact with the actuator in 𝑢𝑘 (𝑘:= 𝑓𝑟𝑜𝑛𝑡, 𝑟𝑒𝑎𝑟), 
the vertical tire force is 

𝐹𝑧𝑘 = −𝑐𝑧𝑘 . (𝑟0𝑘 − 𝑟𝑠𝑘),𝑘: = 𝑓𝑟𝑜𝑛𝑡, 𝑟𝑒𝑎𝑟 (38) 

where  

 𝑟𝑠𝑓 = 𝑏 + 𝑧 − 𝑛 − 𝑈1 (39) 

𝑟𝑠𝑟 = 𝑏 + 𝑧 − 𝑎 + 𝑑. sin𝛾 − 𝑈2 (40) 

The constant 𝑐𝑧 characterises the compliance of the tires in 

the vertical direction. 𝑈1(𝑡) and 𝑈2(𝑡) are the inputs of the actu-
ator in the points 𝑢𝑘 at a certain time 𝑡𝑠𝑡𝑒𝑝. In the following pro-

cesses, the simulation of the road’s profile will take the three 
forms shown in Fig. 4.  

 
Fig. 4. Road’s profiles: (a) Step, (b) Bump, (c) Random road 

In the presence of adhesion in the contact area, Rill [26] 

defines the longitudinal tire force as 

𝐹𝑥𝑓 = −𝑐𝑥𝑓 . (𝑟𝑠𝑓 . 𝛽) − 𝑑𝑥𝑓 . (𝑟𝑠𝑓 . �̇�)                                   (41) 

𝐹𝑥𝑟 = −𝑐𝑥𝑟 . (𝑑. (1 − cos𝛾) − 𝑟𝑠𝑟 . 𝜑) − 𝑑𝑥𝑟 . (𝑑. sin𝛾. �̇� −
𝑟𝑠𝑟 . �̇�) (42) 

The constants 𝑐𝑥𝑘  and 𝑑𝑥𝑘  (𝑘:= 𝑓𝑟𝑜𝑛𝑡, 𝑟𝑒𝑎𝑟) model the 
tires’ longitudinal compliance and damping. It must be noted that 
for the rear wheel, the suspension damping affects the 
translational motions, and the rotation is determined by the 
longitudinal tire force only. 

3.3. Equations of motion 

Jourdain’s principle is resumed in two first-order ODEs. 

𝑀 =

[

𝑚𝑠 +𝑚𝑐 +𝑚𝐹𝑇 (𝑙. 𝑚𝑐 + 𝑑.𝑚𝑅𝑇)cos𝛾 0 0

(𝑙.𝑚𝑐 + 𝑑.𝑚𝑅𝑇) Θ𝑐 + 𝑙
2. 𝑚𝑐 + 𝑑

2. 𝑚𝑅𝑇 0 0
0 0 Θ𝑅𝑇 0
0 0 0 Θ𝐹𝑇

]                                                                                                                  

                                                                                                   (43)  
𝑞 =

(

 

𝐹𝑧𝑟 + 𝐹𝑧𝑓 −𝑚. 𝑔 + (𝑙.𝑚𝑐 + 𝑑.𝑚𝑅𝑇). sin𝛾. �̇�

𝐹𝑆𝐷 − (𝑙.𝑚𝑐 + 𝑑.𝑚𝑅𝑇). cos𝛾. 𝑔 + 𝑑. (𝐹𝑥𝑟 . sin𝛾 + 𝐹𝑧𝑟 . cos𝛾)
−𝑟𝑠𝑟 . 𝐹𝑥𝑟
−𝑟𝑠𝑓. 𝐹𝑥𝑓 )

                           

                                                                                                  (44)  
where 
𝑚 = (𝑚𝑠 +𝑚𝑐 +𝑚𝑅𝑇 +𝑚𝐹𝑇)                                           (45) 

3.4. Numerical computation 

 While the analytical techniques of Newton, D’Alembert, La-
grange and Jourdain were developed centuries ago, these classi-
cal approaches have proven to be suitable for implementation on 
high-speed digital computers when used with matrix and numeri-
cal methods. The application of those methods results in a group 
of differential equations that may be expressed in a very matrix 
form and might be solved using numerical and computer methods 
[30]. As proved previously, two ODEs sum up Jourdain’s principle 
and they read as 

�̇� = 𝑥                                                                                        (46)    

𝑀. �̇� = 𝑞                                                                                   (47) 

Kane and Levinson [18] have concluded that the process pro-
posed here may be expected to lead to computational algorithms 
involving fewer arithmetic operations than algorithms generated 
by employing the best available Lagrangian and Newton–Euler 
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approaches. The MATLAB function ode45 solves the ODEs in 
Eqs (43) and (44). To recover the accelerations, after the integra-
tion process is completed, knowing the coordinates and velocities 
at every reported time step, we recomputed the accelerations by 
reconstructing the equations of motion. The results will be validat-
ed next. 

4. COMPARATIVE ANALYSIS OF THE MODEL 

4.1. Data setting 

The parameters, the geometric constants and the initial values 
are collected in Tabs 1, 2 and 3 in order to perform the NL2D-
EWC model. 

Tab. 1. Model’s parameters 

Designation, (symbol) Value Unit 

Sprung mass with/without user’s weight, 
(𝑚𝑆) 

130/50 kg 

Mass of the control arm, (𝑚𝐶) 2 kg 

Mass of the rear wheel, (𝑚𝑅𝑇) 8 kg 

Mass of the front wheel, (𝑚𝐹𝑇) 4 kg 

Inertia of the control arm, (Θ𝑐) 0.6 kg.m2 

Inertia of the rear wheel, (Θ𝑅𝑇) 0.5 kg.m2 

Inertia of the front wheel, (Θ𝐹𝑇) 0.5 kg.m2 

Suspension stiffness , (𝐾𝑆) 10,000 N/m 

Suspension damping, (𝑁𝑆) 2,150 N.s/m 

Longitudinal RT stiffness, (𝑐𝑥𝑟) 20,0000 N/m 

Longitudinal RT damping, (𝑑𝑥𝑟) 1,500 N.s/m 

Vertical RT stiffness, (𝑐𝑧𝑟) 98,700 N/m 

Longitudinal FT stiffness, (𝑐𝑥𝑓) 200,000 N/m 

Longitudinal front tire damping, (𝑑𝑥𝑓) 1,500 N.s/m 

Vertical front tire stiffness, (𝑐𝑧𝑓) 98,700 N/m 

Gravity, (𝑔) 9.81 m/s2 

FT, front tire; RT, rear tire. 

Tab. 2. Constants of the NL2D-EWC 

Designation,(symbol) Value (m) 

Distance between the joint Bc and the Control arm 

CoG, 𝑙 
0.210 

Distance between joint Bc and joint Br, 𝑑 0.266 

Distance between Sprung mass CoG and joint Bc, 𝑎 0.383 

Distance between Sprung mass CoG and the ground, 

𝑏 
0.574 

Distance between Sprung mass CoG and joint Bf, 𝑛 0.489 

RT radius, 𝑟𝑟0 0.173 

FT radius, 𝑟𝑓0 0.085 

Vertical position of spring attachment D, ℎ 0.087 

Longitudinal position of spring attachment D, 𝑓 1.37 

Distance between Front Tire centre and joint Bc, 𝑑2 0.3 

Distance between joint Bc and spring attachment E, 𝑒 0.28 

FT, front tire; RT, rear tire; NL2D-EWC, non-linear two-dimensional 
electric wheelchair 

Tab. 3. Initial values 

Designation Value Unit 

𝑧0 0 𝑚 

𝛾0 0 𝑟𝑎𝑑 

𝜙0 0 𝑟𝑎𝑑 

𝛽0 0 𝑟𝑎𝑑 

�̇�0 0 𝑚/𝑠 

�̇�0 0 𝑟𝑎𝑑/𝑠 

�̇�0 0 𝑟𝑎𝑑/𝑠 

�̇�0 0 𝑟𝑎𝑑/𝑠 

4.2. Model’s implementation in MBD for Ansys/RecurDyn 

To validate the mathematical model developed in MATLAB, a 
Three-Dimensional Electric Wheelchair (3D-EWC) was built in 
MBD for Ansys, a professional multi-body dynamics simulation 
software powered by RecurDyn. The 3D-EWC appearing in Fig. 
5(a) was inspired from the KARMAN’s XO-202 electric wheelchair, 
but some differences exist concerning the design, the measure-
ments and the objective. The seat of the model is not supposed to 
stand up as the KARMAN’s does. 

 
Fig. 5. (a) The 3D-EWC, (b) Tire/Actuator contact: Test-rig. 3D-EWC,  
             three-dimensional electric wheelchair 

For the designations shown in the previous tables, the NL2D-
EWC and the 3D-EWC have the same values but it is clear that 
the 3D model has a larger geometry. When the tire–road interac-
tion is simulated by either a bumped road or a test-rig, as shown 
in Fig. 5(b), an adequate contact between the surfaces needs to 
be adjusted. Tab. 4 presents the “Solid” contact properties. 

Tab. 4. Solid contact properties 

Designation Value  

Bounding buffer length 109 

Plane tolerance factor 3 

Contact spring coefficient 3,000 

Contact damping coefficient 8,200 

Rebound damping factor 0.25 
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4.3. Simulation and results 

 In this section, two scenarios will be presented. First, the 
NL2D-EWC will be treated as a quarter-car model by applying a 

step motion to the RT, the same as in Fig. 4(a). In 3 s of time 
simulation, the dynamical behaviour is approved by the 3D-EWC 

with a step that is 0.05 m high at 1.5 s and without considering 

the user’s weight (𝑚𝑆 = 50 kg), as illustrated in Fig. 6. 
The figure shows the vertical displacement, velocity and ac-

celeration of the Sprung mass in the first part where a good corre-
lation between the modelled and simulated behaviour is noticed. 
In the second part of Fig. 6, the rotations of the Control arm and 
those of the RT are quite identical to the simulation. 
 

 

 
Fig. 6. NL2D-EWC quarter-car vs. MBD for Ansys model: The step case behaviour. NL2D-EWC, non-linear two-dimensional electric wheelchair

Second, the entire NL2D-EWC will be engaged by simulating 
a bump obstacle, as presented in Fig. 4(b), of 0.03 m length and 

𝑈1,2 = 0.02 𝑚 high acting at two-time steps 0.25 s and 0.75 s on 

the FTs and RTs, respectively. The user’s weight is considered 
and the total mass corresponding to the Sprung mass is 
𝑚𝑆 = 130 kg. The NL2D-EWC gives information about the posi-

tion, velocity and acceleration of the four coordinates y =
(𝑧𝛾𝛽𝜑)𝑇. From this point, we will be interested in the vertical 
motion of the Sprung mass shown in Fig. 7. The bump disturb-
ance for the front wheel is given in MBD for Ansys/RecurDyn by 
the following composition of functions:  

STEP(time, 1.0, 0.0, 1.1, 0.02)
+ STEP(time, 1.4, 0.02, 1.5, 0.0 

The highest peaks in Fig. 7 are related to the displacement 
and acceleration of the Sprung mass when the FT passes over 
the obstacle, while the lower peaks are associated with the RT 
passage; these observations assume relevance in light of the fact 
that a suspension exists that connects the tire to the Sprung 
mass. In those experiments, there is a good agreement between 
the results of the mathematical and the simulated models. The 
small differences may be due to the linearisation of the equations 
of motion as it was estimated in Hurel et al. [14] or merely to the 
complexity of the 3D model over the non-linear two-dimensional 
one.  

 
Fig.7. NL2D-EWC vs. 3D-EWC measurements: The bump case.  
          3D-EWC, three-dimensional electric wheelchair; NL2D-EWC,  
          non-linear two-dimensional electric wheelchair 

5. OPTIMISATION PROCESS FOR RIDE COMFORT,  
ROAD HOLDING AND SUSPENSION WORKSPACE 

The optimal design of a multi-body system is started by defin-
ing an objective function, which contains the performance criteria. 
An objective function based on a process of multi-body dynamics 
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occurs in an interval of time. It is often considered as a time inte-
gral of a function that has a set of conditions within that span [9]. 
For that purpose, The NL2D-EWC model based on Jourdain’s 
principle will be included in a global optimisation program. 

5.1. Parameters of the dynamic optimisation 

The weighted RMS of the Sprung mass’ acceleration is fre-
quently used to evaluate the riding quality of a vehicle [15]. The 
rider’s comfort improves as the acceleration decreases. The 

MATLAB function rms returns the RMS level of the vector �̈�𝑆 
where the waveform is a continuous function of time [23]  

𝑓1 = 𝑟𝑚𝑠(�̈�) = √(
1

𝑡𝐸𝑛𝑑−𝑡0
). ∫ 

𝑡𝐸𝑛𝑑
𝑡0

�̈�𝑆
2
(𝑡). 𝑑𝑡   (48) 

The continual contact between the tires and the road surface 
is one of the essential factors underlying the designing of the 
suspension parameters. Therefore, the road holding will be a 
second objective. While applying the random processes theory for 
road holding evaluation, the RMS value of the dynamic vertical 

force 𝐹𝑧𝑖  (𝑖 = 𝑓𝑟𝑜𝑛𝑡, 𝑟𝑒𝑎𝑟) between wheels and road, caused 
by the road irregularities, has been taken as the criterion for road 
holding. Sinha [32] concludes that for good road holding this value 
should have a minimum rate. The loads for FTs and RTs in Eq. 
(38) will be combined as 

𝑓2 = √𝜅𝑓
2. 𝑟𝑚𝑠(𝐹𝑧𝑓)

2 + 𝜅𝑟
2. 𝑟𝑚𝑠(𝐹𝑧𝑟)

2 (49) 

𝜅𝑓 = 0.6 and 𝜅𝑟 = 0.4 are coefficients imposed to regulate the 

combination. Due to the restriction of the structure and the vehi-
cle’s design, the space between the wheels and the suspended 
mass must be limited to one stroke, which is frequently referred to 
as the working space. To provide a better workspace, it is neces-
sary to reduce this change in distance [29]. Consequently, the 

modulus of the vector between the attachment points 𝐷 and 𝐸 is 
chosen as the third cost function, which is given by 

𝑓3 = ‖
𝑟𝐷𝐸,0

|𝑟𝐷𝐸,0|
. (|𝑟𝐷𝐸,0| − 𝑙0)‖ (50) 

Eq. (50) was presented previously as the deformed length of 
the non-linear spring-damper unit. The eight design variables are 

 𝑉 = (𝑚𝑆𝑚𝐶 𝑚𝐹𝑇 𝑚𝑅𝑇𝐾𝑠𝑁𝑠𝑐𝑧𝑓𝑐𝑧𝑟)
𝑇

         (51) 

Thus, the dynamic optimisation problem can be described as 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 {

𝑓1(𝑉)
𝑓2(𝑉)

𝑓3(𝑉)
 

While the initial state of the NL2D-EWC was presented previ-
ously, the bounds of the optimisation variables are resumed in 
Tab. 5. 

If an objective function has sensitivity to varying parameters, it 
may have difficulty during the process. The problem arising from 
comparing one value of mass and another of stiffness is expected 
to be clearly apparent. The transformation of the initial representa-
tion, which contains information about the physical nature, into a 
scaled representation is numerically efficient [10]. Each variable 
𝑉𝑖 will be scaled to 1 by  

�̂�𝑖 =
𝑉𝑖−𝑙𝑏𝑖

𝑢𝑏𝑖−𝑙𝑏𝑖
 (52) 

where �̂�𝑖, 𝑙𝑏𝑖 and 𝑢𝑏𝑖 are the new scaled variable, the lower 
bound and the upper bound, respectively. It is necessary that the 
original design variables be used to calculate the objective func-
tion.  

Tab. 5. Variables bonds of the dynamic optimisation 

Variables 
Bonds 

lower upper 

𝑚𝑆 46 80 

𝑚𝐶  0.9 3.5 

𝑚𝐹𝑇 2.5 4.5 

𝑚𝑅𝑇 5 14 

𝐾𝑠 10,000 20,000 

𝑁𝑠 1,000 2,500 

𝑐𝑧𝑓 90,000 100,000 

𝑐𝑧𝑟 90,000 100,000 

 

5.2. Generation of an artificial-random road profile 

The random road profile in Fig. 4(c) is chosen to be the form 
of excitation in the process. The literature is rich in characterisa-
tion of the road profile where most of it is made by the PSD. 
Doods and Robson [7] illustrate the profile classifications present-
ed in ISO-8608 (International Organization for Standardization), 
from smooth irregularities (class A) to rough terrain (class E). Rill 
[26] and Balkwill [3] both describe an efficient generation of a 
random profile, which can have the form of  

Φ(Ω) = Φ(Ω0). (
Ω

Ω0
)−ω (53) 

where the wave number expressed in (𝑟𝑎𝑑/𝑚) is 

Ω = 2𝜋/𝐿                                                                                (54) 

and the value of PSD at Ω0 = 1, (𝑚
2/(𝑟𝑎𝑑/𝑚)) is 

Φ0 = Φ(Ω0)                                                                            (55) 

L represents the wavelength (m), Ω0 is the reference wave 

number (rad/m) and 𝜔 is the waviness. A sinusoidal 

approximation of a random profile 𝑈𝑅  by a superposition of 𝑁 

(0 ≤ 𝑁 ≤ ∞) waves is  

𝑈𝑅(𝑠) = ∑ 𝑁
𝑖=1 𝐴𝑖 . sin(Ω𝑖 . 𝑠 − Ψ𝑖) (56) 

 The momentary position of the wheelchair with the associated 

longitudinal speed 𝑣𝑥  and the phase angles Ψ𝑖 is given by 

𝑠 = 𝑣𝑥 . 𝑡                                                                                   (57) 

Eq. (56) can offer a PSD Φ(Ω0) if it has a set of amplitudes  

𝐴𝑖 = √2.Φ(Ω𝑖). ΔΩ,𝑖 = 1(1)𝑁 (58) 

The applied input of the random road profile shown in Fig. 8 
is associated with a roughness of a class B, a good road that 
is modelled by the values in Tab. 6. The NL2D-EWC travels at a 

constant speed 𝑣𝑥 = 8𝑘𝑚/ℎ and it is supposed that the rear 
wheel has the same input as the front wheel but delayed by 

𝛿𝑡 = (𝑑. cos𝛾 + 𝑑2)/𝑣𝑥 . The phase angles are distributed 
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uniformly and randomly as Ψ𝑖 = 2𝜋.randn(size of 𝑖 = 1(1)𝑁). 
The MATLAB function randn produces the same normally distrib-
uted pseudorandom numbers each time the program restarts, 
which is ideal for an optimisation process. 

Tab. 6. PSD characteristics of a class B profile 

Designation Value Unit 

𝑁 200 – 

Ω0 1 (𝑟𝑎𝑑/𝑚) 

ΔΩ ≡ [Ωm𝑖𝑛 , Ωm𝑎𝑥] [0.05, 32.83] (𝑟𝑎𝑑/𝑚) 

Φ0 5.10−6 (𝑚2/(𝑟𝑎𝑑/𝑚)) 

𝜔 2 – 

PSD, power spectral density 

The road profiles in Fig. 8 are the same, but the phase shift 
between the continuous black profile, related to the FT, and the 
dotted magenta profile, linked to the RT, represents the time 
between the passage of the tires over the same point. These two 
profiles will be the step inputs uf and ur of the road in the following 
section. 

 
Fig. 8. Excitation for smooth road of Class B 

5.3. Multi-objective optimisation with genetic algorithm 

Considered as meta-heuristics, evolutionary algorithms based 
on populations of solutions can solve multi-objective problems and 
generate solutions in the form of fronts. Thus, Deb [6] published in 
2001 a book on the use of evolutionary algorithms for multi-
objective optimisation, in which his Non-dominated Sorting Genet-
ic Algorithm (NSGA) was upgraded and improved to NSGA-II. 
During its execution, the genetic algorithm constantly alters a 
group of solutions to pick individuals from the actual population to 
be parents. Under some criteria, the chosen parents are served to 
create a new generation of children, or simply the next individuals. 
This consecutive creation of generations yields steadily to one or 
more optimal solutions, depending on the number of objectives 
([19]. This work will benefit from the variety of options in the 
MATLAB Optimisation Toolbox. The genetic algorithm gamultiobj, 
a variant of NSGA-II (https://www.mathworks.com), will be used to 
evaluate the effectiveness of the NL2D-EWC model with the 
options provided in Tab. 7 and the remaining default parameters. 

Tab. 7. Problem setting with gamultiobj options 

Designation Value 

PopulationSize 250 

CrossoverFraction 0.8 

MaxGenerations 400 

FunctionTolerance 10−4 

The solutions are shown in the decision-variables space in 
Fig. 9(a) and the objective space in Fig. 9(b) by using parallel-
coords. The solution set is distributed rather irregularly in parallel 
coordinate plots, which is not a badly-distributed solution set, as 
uniformly-distributed solutions can have distinct values on differ-
ent objectives. 

 

 
Fig. 9. Parallel Coordinates representation: (a) Sensitivity to the problem  
            parameters, (b) Distribution of solutions 

These solutions for the three objectives are illustrated in the 
3D Pareto front of Fig. 10. From the variety of solutions, one can 
recognise those in extremities with the best score for each criteri-
on. It is observed, in the non-dominant solutions of (a), (b) and (c), 
that the 2D Pareto front of the RMS of vertical acceleration and 
the Suspension workspace seem to be non-convex and the two 
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criteria have almost the same optimal solutions. Otherwise, there is a clear diversity with the Combined tires’ loads. 

 
Fig. 10. Surface plot of 3D Pareto front and 2D-Pareto fronts for all combination (a, b, and c). RMS, root-mean-square 

The compromised solution, marked by a red star in the fig-
ure, can be selected depending on the design preference, but 
this operation is sometimes difficult. In order to visualise the 
relation between criteria and facilitate the selection of the com-
promise point, the decision can be made easier by introducing 
Level Diagrams (LD) visualisation, which helps to understand the 
calculated Pareto front and gives correlation between objective 
and decision space. Reynoso-Meza et al. [25] proposed that 
each objective 𝑓𝑝(𝑉), (𝑝 = 1, 2 and 3), is scaled similarly to Eq. 

(52) 

 𝑓𝑝(𝑉) =
𝑓𝑝−𝑓𝑝

𝑚𝑖𝑛

𝑓𝑝
𝑚𝑎𝑥−𝑓𝑝

𝑚𝑖𝑛   (59) 

For every normalised objective vector 𝑓(𝑉) =
[𝑓1(𝑉), … , 𝑓𝑚(𝑉)] a p-norm ||𝑓(𝑉)||

p
 is applied to assess the 

distance to an ideal and minimal solution at the same time, 

where 

{
 
 

 
 ||𝑓(𝑉)||

1
= ∑ 2

𝑝=1 𝑓𝑝(𝑉)
2

||𝑓(𝑉)||
2
= ∑ 3

𝑝=2 𝑓𝑝(𝑉)
2

||𝑓(𝑉)||
3
= 𝑓1(𝑉)

2 + 𝑓3(𝑉)
2

  (60)  

The LD representation shows a two-dimensional graph for 

each objective and variable. The arranged sets (𝑓𝑝(𝑉), 
||𝑓(𝑉)||

p
) are plotted in each objective and variable sub-graph. 

Consequently, a prearranged solution will have a similar y-value 

in all displays. This correspondence makes it possible to 

compare solutions concurring to the chosen norm according to 

the general tendencies along the Pareto front. Fig. 11 

demonstrates LD plots for each combination, the knee point of 

which is clearly manifested in all of them. It is noteworthy to 

observe that the figure is divided into three rows according to the 

colours. The graphs with red markers are LD for vertical 

acceleration and combined wheel load, where the minimum 

value (knee) on the y-axis represents the best score for each 

objective but in relation to the other. The same goes for the 

yellow and blue rows. The compromise solution shown in the 

previous figure was selected with help of the LD representations. 
The results of the optimisation process, with a CPU-time (central 
processing unit) of 64,679 s, are displayed in Tab. 8. The table 
compares the scores of the best trade off (corresponding to the 
compromised solution) with the best candidate in each criterion; 
considered individually, these scores demonstrate better values. 
The optimal variables are illustrated as well. 
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Fig.11. LD representation of Pareto fronts for each bi-objectives. LD, level diagrams; RMS, root-mean-squar 

Tab. 8. Best trade off, best candidate in each criterion  
             and optimal variables 

Best trade off (compromised 

solution) 

Best candidate in each 

criterion 

Designation Value Designation Value 

𝑓1 4.8400 𝑓1 3.3281 

𝑓2 309.3130 𝑓2 219.2769 

𝑓3 0.1412 𝑓3 0.1363 

Optimal variables of the compromised solution 

Variable 
Optimal 

value 
Variable 

Optimal 

value 

𝑚𝑆 64.8411 𝑘𝑔 𝐾𝑠 14,477 𝑁/𝑚 

𝑚𝐶  1.3581 𝑘𝑔 𝑁𝑠 
1,932.6 

𝑁. 𝑠/𝑚 

𝑚𝐹𝑇 3.4178 𝑘𝑔 𝑐𝑧𝑓 96,210 𝑁/𝑚 

𝑚𝑅𝑇  5.5654 𝑘𝑔 𝑐𝑧𝑟 91,481 𝑁/𝑚 

The comparison between the original and the optimised ver-
tical acceleration in Fig. 12 reveals an acceptable decrease in 
the maximum peak related to the first impact with the obstacle 
but a slight one for the rest of the time simulation. 

Fig. 13 displays front and RTs optimised loads relative to 
their original curves. Both loads achieved a small improvement, 
especially the frontal. This superiority of the front load is due to 
the number of variables affecting the behaviour of the FT, which 
is lower than that of the RT linked to the Control arm and to the 
Sprung mass. 

Similar to the other objectives, the suspension workspace in 
Fig. 14 gains a general reduction of the RMS although the simu-
lation of the optimal values has no advantage over the origin 
curve after the FT-obstacle impact period. 

The behaviour of the three criteria was identical with some 

slight difference in the values of the best compromise and the 
best candidate in each criterion, especially for the combined tires’ 
load. This is due to the non-dominant role of the mass ms in the 
motion of the FT and the favouring of the coefficient 𝜅𝑓 (𝜅𝑓 =

0.6 and 𝜅𝑟 = 0.4) in the formula for this objective (f2) in Eq. 
(49). Optimisation with user’s mass has shown that for high 
Sprung mass or high user’s mass, the RMS of vertical accelera-
tion and the suspension workspace will be lower. However, for 
the load of the tires it is the opposite. 

The simulations presented previously in the optimisation pro-
cess did not take into account the mass of the user. To increase 
the results, a new simulation was run by adding a fixed average 
additional mass (80 kg) to the variable mass of the Sprung mass. 
Tab. 9 contains a comparison between the values without and 
with the user’s mass. 

 
Fig.12. Vertical acceleration of the sprung mass: Optimised vs. origin. 

NL2D-EWC, non-linear two-dimensional electric wheelchair 
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Fig.13. Wheel’s load: (a) FT load: Optimised vs. origin, (b) RT load: Optimised vs. origin. FT, front tire; RT, rear tire 

 
Fig.14. Suspension workspace: Optimised vs. origin. NL2D-EWC,  

non-linear two-dimensional electric wheelchair 

Tab. 9. Best trade off, best candidate in each criterion  
             of the optimisation without and with the user’s mass 

 
Optimisation without 

the user’s mass 

Optimisation with the 

user’s mass 

 
Best trade 

off 

Best 

candidate 

Best 

trade off 

Best 

candidat

e 

Objective Value Value Value Value 

𝑓1 4.8400 3.3281 2.1924 1.9229 

𝑓2 309.3130 219.2769 792.9069 569.6984 

𝑓3 0.1412 0.1363 0.1312 0.1280 

6. CONCLUSION 

This paper presents a description of Jourdain’s principle 
through its application in modelling an electric wheelchair. There-
fore, the equations of motion were formulated on this interpreta-
tion to facilitate their comprehension. The approach provided 
advantages over other classical formulations. The concept of 
generalised coordinates and velocities was used to embed the 
constraints and derive first-order differential equations. An ap-
propriate choice of velocities conducts to decoupled second 
derivatives. The method also suggested that the virtual power of 
constraint forces vanishes from the beginning, which was anoth-
er advantage. The straightforward implementation of the principle 

was noteworthy and the reduced number of symbolic equations 
characterised the efficiency of the calculations. 

Despite the slight dissimilarities, the comparison between the 
responses of the two-dimensional non-linear model and the 
three-dimensional one built into the simulation software showed 
that a precise setting in the multi-body modelling of mechanical 
systems could offer great results in a short time with low pro-
cessing capacity requirements. 

The improved ride comfort, road holding and working space 
of the suspension made it possible to test the effectiveness of the 
model. The objective cost functions for these criteria have been 
defined and inserted into a MATLAB multi-objective genetic 
algorithm. The scaling of the variables allowed a balanced scan-
ning in their intervals. Acceptable solutions were captured on the 
Pareto fronts, but the non-convexity between ride comfort and 
the suspension workspace was noticeable, making the latter 
unprofitable. While the FT load was initially preferred over the 
rear load, the final decision of the compromise solution between 
all criteria was estimated by using the LD visualisation. It has 
been noticed that the generation of a random road profile by the 
PSD considerably increased the processing time. 
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