Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The two dimensional temperature effect on the vibration is computed for the first time for a clamped triangular plate with two dimensional thickness. In the study we focused on isosceles, right-angled and scalene triangles only. The first three modes of vibration are computed on different variations of plate parameters using the Rayleigh-Ritz method. The objective of the study is to reduce the frequency of the plates. A comparative study of the frequencies with other available results well presents the objective of the study.
Rocznik
Tom
Strony
37--48
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Department of Mathematics, Amity University Haryana Gurugram, India
autor
- Department of Mathematics, Amity University Haryana Gurugram, India
Bibliografia
- [1] Chernyshov, N.A., & Chernyshov, A.D. (2001). Viscoelastic vibrations of a triangular plate. Journal of Applied Mechanics and Technical Physics, 42(5), 510-515.
- [2] Karunasena, W., & Kitipornchai, S. (1997). Free vibration of shear-deformable general triangular plates. Journal of Sound and Vibration, 199, 595-613.
- [3] Bhardwaj, R., & Mani, N. (2019). Modelling on vibration of skew plate with thickness and temperature variation. Vibroengineering Procedia, 22, 6-12.
- [4] Venkateshapp, S.C., Kumar, P., & Ekbote, T. (2019). Free vibration studies on plates with central cut-out. CEAS Aeronautical Journal, 10, 623-632.
- [5] Saliba, H.T. (1990). Transverse free vibration of simply supported right triangular thin plates: a highly accurate simplified solution. Journal of Sound and Vibration, 139(2), 289-297.
- [6] Zhang, X.F., & Li, W.L. (2015). Vibration of arbitrarily-shaped triangular plates with elastically restrained edges. Journal of Sound and Vibration, 357, 195-206.
- [7] Singh, B., & Chakraverty, S. (1992). Transverse vibration of triangular plates using characteristic orthogonal polynomials in two variables. International Journal of Mechanical Sciences, 34(12), 947-955.
- [8] Mirza, S., & Alizadeh, Y. (1994). Free vibration of partially supported triangular plates. Computers & Structures, 51(2), 143-150.
- [9] Kitipornchai, S., Liew, K.M., Xiang, Y., & Wang, C.M. (1993). Free vibration of isosceles triangular Mindlin plates. International Journal of Mechanical Science, 35, 89-102.
- [10] Abrate, S. (1996). Vibration of point supported triangular plates. Computers & Structures, 58, 327-336.
- [11] Chaudhary, R.R., & Falak, Y.R. (2015). Vibration analysis of laminated triangular plate by experimental and finite element analysis. International Journal of Engineering Research and General Sciences, 3(2), 786-791.
- [12] Zhong, H.Z. (2000). Free vibration analysis of isosceles triangular Mindlin plates by the triangular differential quadrature method. Journal of Sound and Vibration, 237, 697-708.
- [13] Nallim, L.G., Luccioni, B.M., & Grossi, R.O. (2005). Vibration of general triangular composite plates with elastically restrained edges. Thin-Walled Structures, 43(11), 1711-1745.
- [14] Pradhan, K.K., & Chakraverty, S. (2016). Natural frequencies of equilateral triangular plates under classical edge supports. Symposium on Statistical and Computational Modelling with Applications, 30-34.
- [15] Sharma, A., Raghav, A.K., Sharma, A.K., & Kumar, V. (2016). A modelling on frequency of rectangle plate. International Journal of Control Theory of Applications, 9, 272-282.
- [16] Kaur, N. (2020). Vibrational 47ehaviour of tapered triangular plate with clamped ends under thermal condition. Journal of The Institution of Engineers (India): Series C, 1-9
- [17] Sharma, A., Mani, N., & Bhardwaj, R. (2019). Natural vibration of tapered rectangle plate with exponential variation in non homogeneity. Journal of Vibroengineering, 21, 187-197.
- [18] Sharma, A. (2019). Vibration frequency of a rectangle plate with linear variation in thickness and circular variation in Poisson’s ratio. Journal of Theoretical and Applied Mechanics, 57(3), 605-615.
- [19] Lather, N., & Sharma, A. (2019). Natural vibration of skew plate on different set of boundary conditions with temperature gradient. Vibroengineering Procedia, 22, 74-80.
- [20] Sharma, A. (2019). Natural vibration of parallelogram plate with circular variation in density. Acta Technica, 63(6), 763-774.
- [21] Chakraverty, S. (2009). Vibration of Plates. Boca Raton, London, New York: CRC Press, Taylor and Francis Group.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05049e11-8dde-4190-a7a0-eb0d6ee6f342