PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New approach to brake pad wear modelling based on test stand friction-mechanical investigations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of investigations of a railway disc brake system related to the mass wear of its brake pads. The tests were carried out on a certified brake stand designed to determine the friction-mechanical characteristics of the brakes. The test stand was additionally equipped with a thermographic camera to observe the contact points of the brake pads with the disc. Particular attention was drawn to investigating the impact on the mass wear of the brake pads of such parameters of the braking process as contact surface of the brake pad with the rotor, thickness of the brake pads as the indicator of their initial wear, clamping force of the pads against the rotor, rail vehicle mass to be decelerated, and speed, at which the deceleration begins. The scientific aim of the paper is to present the relations between the mass wear of the brake pads and the quantities that characterize the braking process. A regression model was determined to estimate the wear of the brake pads based on a single braking process with the preset input quantities.
Rocznik
Strony
419--426
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Institute of Transport, ul. Piotrowo 3, 60-965 Poznań, Poland
  • Poznan University of Technology, Institute of Transport, ul. Piotrowo 3, 60-965 Poznań, Poland
  • Poznan University of Technology, PhD studies, ul. Piotrowo 3, 60-965 Poznań, Poland
  • AKSA Poland Hydraulics ul. Unii Lubelskiej 1, 61-249 Poznań, Poland
Bibliografia
  • 1. Abbasi S, Wahlströma J, Olander L, Larssonc C, Olofssona U, Sellgren U. A study of airborne wear particles generated from organic railway brake pads and brake discs. Wear 2011; 273: 93-99, https://doi.org/10.1016/j.wear.2011.04.013.
  • 2. Ahmadijokan F, Shojaei A, Dordanihaghighi S, Jafarpour E, Mohammadi S, Arjmand M. Effests of hybrid carbon-aramid fiber on performance of non-asbestos organic brake friction composite. Wear 2020; 452-453: 203280, https://doi.org/10.1016/j.wear.2020.203280.
  • 3. Amaren SG, Yawas DS, Aku SY. Effect of periwinkles shell particle size on the wear behavior of asbestos free brake pad. Results in Physics 2013; 3: 109-114, https://doi.org/10.1016/j.rinp.2013.06.004.
  • 4. Anoop S, Natarajan S, Kumaresh Babu SP. Analysis of factors influencing dry sliding wear behavior of Al/SiCp–brake pad tribosystem. Materials and Design 2009; 30: 3831-3838, https://doi.org/10.1016/j.matdes.2009.03.034.
  • 5. Bernstein DM, Toth B, Rogers RA, Kunzendorf P, Phillips JI, Schaudien DS. Final results from a 90-day quantitative inhalation toxicology study evaluating the dose-response and fate in the lung and pleura of chrysotile-containing brake dust compared to TiO2, chrysotile, crocidolite or amosite asbestos: Histopathological examination, confocal microscopy and collagen quantification of the lung and pleural cavity. Toxicology and Applied Pharmacology 2021; 424: 115598, https://doi.org/10.1016/j.taap.2021.115598.
  • 6. Bernstein DM, Toth B, Rogers RA, Kling DE, Kunzendorf P, Phillips JI, Ernst H. Evaluation of the exposure, dose-response and fate in the lung and pleura of chrysotile-containing brake dust compared to TiO2, chrysotile, crocidolite or amosite asbestos in a 90-day quantitative inhalation toxicology study –Interim results Part 1: Experimental design, aerosol exposure, lung burdens and BAL. Toxicology and Applied Pharmacology 2020; 387: 114856, https://doi.org/10.1016/j.taap.2019.114856.
  • 7. Chandradass J, Baskara Sethupathi P, Amutha Surabi M. Fabrication and characterization of asbestos free epoxy based brake pads using carbon fiber as reinforcement. Materials Today: Proceedings 2021; 45: 7222-72227, https://doi.org/10.1016/j.matpr.2021.02.530.
  • 8. Chandradass J, Amutha Surabi M, Baskara Sethupathi P, Jawahar P. Development of low cost brake pad material using asbestos free sugarcane bagasse ash hybrid composites. Materials Today: Proceedings 2021; 45: 7050-7057, https://doi.org/10.1016/j.matpr.2021.01.877.
  • 9. Chen F, Li Z, Luo Y, Li D, Ma W, Zhang C, Tang H, Li F, Xiao P. Braking behaviors of Cu-based PM brake pads mating with C/C–SiC and 30CrMnSi steel discs under high-energy braking. Wear 2021; 486-487: 204019, https://doi.org/10.1016/j.wear.2021.204019.
  • 10. Chen J, Hu H, Ge Y, Wang K, Huang W, He Z. An Energy Storage System for Recycling Regenerative Braking Energy in High-Speed Railway. IEEE Transactions on Power Delivery 2020; 36(1): 320-330, DOI: 10.1109/TPWRD.2020.2980018.
  • 11. El-Tayeb NSM, Liew KW. Effect of water spray on friction and wear behaviour of noncommercial and commercial brake pad materials. Journal of Materials Processing Technology 2008; 208: 135-144, https://doi.org/10.1016/j.jmatprotec.2007.12.111.
  • 12. Elzayady N, Elsoeudy R. Microstructure and wear mechanisms investigation on the brake pad. Journal of Materials Research and Technology 2021; 11: 2314-2335, https://doi.org/10.1016/j.jmrt.2021.02.045.
  • 13. Gajek L, Kałuszka M. Wnioskowanie statystyczne – modele i metody. WNT, Warszawa 2000: 90-95.
  • 14. Glišović J, Pešić R, Lukić J, Miloradović D. Airborne wear particles from automotive brake system: environmental and health issues. 1st International conference on Quality of Life. June 2016: 289-295.
  • 15. Głowacz A, Tadeusiewicz R, Legutko S, Caesarendra W, Irfan M, Liu H, Brumercik F, Gutten M, Sulowicz M, Daviu JA, et al. Fault diagnosis of angle grinders and electric impact drills using acoustic signals. Applied Acoustics 2021; 179: 108070, https://doi.org/10.1016/j.apacoust.2021.108070.
  • 16. Gurunath PV, Bijwe J. Friction and wear studies on brake-pad materials based on newly developed resin. Wear 2007; 263: 1212-1219, https://doi.org/10.1016/j.wear.2006.12.050.
  • 17. Hatam A, Khalkhali A. Simulation and sensitivity analysis of wear on the automotive brake pad. Simulation Modelling Practice and Theory 2018; 84: 106-123, https://doi.org/10.1016/j.simpat.2018.01.009.
  • 18. Idris UD, Aigbodion VS, Akubakar IJ, Nwoye CI. Eco-friendly asbestos free brake-pad: Using banana peels. Journal of King Saud University – Engineering Sciences 2015; 27: 185-192, https://doi.org/10.1016/j.jksues.2013.06.006.
  • 19. Ingo GM, D’Uffizi M, Falso G, Bultrini G, Padeletti G. Thermal and microchemical investigation of automotive brake pad wear residues. Thermochimica Acta 2004; 418: 61-68, https://doi.org/10.1016/j.tca.2003.11.042
  • 20. Jacob Moses A, Suresh Babu A, Ananda Kumar S. Analysis of physical properties and wear behavior of phenol formaldehyde – Basalt fiber reinforced brake pad. Materials Today: Proceedings 2020; 33: 1128-1132, https://doi.org/10.1016/j.matpr.2020.07.228.
  • 21. Jiang L, Jiang YL, Yu L, Yang HL, Li ZS, Ding YD, Fu GF. Fabrication, microstructure, friction and wear properties of SiC3D/Al brake disc−graphite/SiC pad tribo-couple for high-speed train. Transactions of Nonferrous Metals Society of China 2019; 29: 1889-1902, https://doi.org/10.1016/S1003-6326(19)65097-1.
  • 22. Kalel N, Bhatt B, Darpe A, Bijwe J. Argon low-pressure plasma treatment to stainless steel particles to augment the wear resistance of Cufree brake-pads. Tribology International 2022; 167: 107366, https://doi.org/10.1016/j.triboint.2021.107366.
  • 23. Krysicki W, Włodarski L. Analiza matematyczna w zadaniach, Wydawnictwo PWN, Warszawa 2007: 412-426.
  • 24. Laguna-Camacho JR, Juárez-Morales G, Calderón-Ramón C, Velázquez-Martínez V, Hernández-Romero I, Méndez-Méndez JV, Vite-Torres M. A study of the wear mechanisms of disk and shoe brake pads. Engineering Failure Analysis 2015; 56: 348-359, https://doi.org/10.1016/j.engfailanal.2015.01.004.
  • 25. Mahale V, Bijwe J. Exploration of plasma treated stainless steel swarf to reduce the wear of copper-free brake-pads. Tribology International 2020; 144: 106111, https://doi.org/10.1016/j.triboint.2019.106111.
  • 26. Maiorana S, Teoldi F, Silvani S, Mancini A, Sanguineti A, Mariani F, Cella C, Lopez A, Potenza MAC, Lodi M, Dupin D, Sanvito T, Bonfanti A, Benfenati E, Baderna D. Phytotoxicity of wear debris from traditional and innovative brake pads. Environment International 2019; 123:156-163, https://doi.org/10.1016/j.envint.2018.11.057.
  • 27. Park J, Joo B, Seo H, Song W, Lee JJ, Lee WK, Jang H. Analysis of wear induced particle emissions from brake pads during the worldwide harmonized light vehicles test procedure (WLTP). Wear 2021; 466-467: 203539, https://doi.org/10.1016/j.wear.2020.203539.
  • 28. Pinca-Bretotean C, Josan A, Putan V. Testing of brake pads made of non asbestos organic friction composite on specialized station. Materials Today: Proceedings 2021; 45: 4183-4188, https://doi.org/10.1016/j.matpr.2020.12.039.
  • 29. Polajnar M, Kalin M, Thorbjornsson I, Thorgrimsson JT, Valle N, Botor-Probierz A. Friction and wear performance of functionally graded ductile iron for brake pads. Wear 2017; 382-383: 85-94, https://doi.org/10.1016/j.wear.2017.04.015.
  • 30. Pujari S, Srikiran S. Experimental investigations on wear properties of Palm kernel reinforced composites for brake pad applications. Defence Technology 2019; 15: 295-299, https://doi.org/10.1016/j.dt.2018.11.006.
  • 31. Rajambal K, Umamaheswari B, Chellamuthu C. Electrical braking of large wind turbines. Renewable Energy 2005; 30: 2235-2245, https://doi.org/10.1016/j.renene.2004.11.002.
  • 32. Rakov V, Kapustin A, Danilov I. Study of braking energy recovery impact on cost-efficiency and environmental safety of vehicle. Transportation Research Procedia 2020; 50: 559–565, https://doi.org/10.1016/j.trpro.2020.10.067.
  • 33. Rymaniak L, Kaminska M, Szymlet N, Grzeszczyk R. Analysis of Harmful Exhaust Gas Concentrations in Cloud behind a Vehicle with a Spark Ignition Engine. Energies 2021; 14(6): 1-14, https://doi.org/10.3390/en14061769.
  • 34. Sawczuk W. Application of vibroacoustic diagnostics to evaluation of wear of friction pads rail brake disc. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2016; 18(4): 565-571, http://doi.org/10.17531/ein.2016.4.11.
  • 35. Sawczuk W, Ulbrich D, Kowalczyk J, Merkisz-Guranowska A. Evaluation of Wear of Disc Brake Friction Linings and the Variability of the Friction Coefficient on the Basis of Vibroacoustic Signals. Sensors 2021; 21(17): 5927-1-5927-21, https://doi.org/10.3390/s21175927.
  • 36. Sawczuk W, Merkisz-Guranowska A, Rilo Cañás AM. Assessment of disc brake vibration in rail vehicle operation on the basis of brake stand. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2021:23 (1): 221 – 230, http://doi.org/10.17531/ein.2021.2.2.
  • 37. Smoczynski P, Gill A, Kadziński A, Maintenance layers for railway infrastructure in Poland. Transport 2020; 35(6): 605-615, https://doi.org/10.3846/transport.2020.14137.
  • 38. Söderberg A, Andersson S. Simulation of wear and contact pressure distribution at the pad-to-rotor interface in a disc brake using general purpose finite element analysis software. Wear 2009; 267: 2243-2251, https://doi.org/10.1016/j.wear.2009.09.004.
  • 39. Świderski A, Borucka A, Jacyna-Gołda I, Szczepański E. Wear of brake system components in various operating conditions of vehicle inthe transport company. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21(1): 1-9, http://doi.org/10.17531/ein.2019.1.1.
  • 40. Tavangar R, Moghadam HA, Khavandi A, Banaeifar S. Comparison of dry sliding behavior and wear mechanism of low metallic and copperfree brake pads. Tribology International 2020; 151: 106416, https://doi.org/10.1016/j.triboint.2020.106416.
  • 41. Thendral Selvam P, Pugazhenthi R, Dhanasekaran C, Chandrasekaran M, Sivaganesan S. Experimental investigation on the frictional wear behaviour of TiAlN coated brake pads. Materials Today: Proceedings 2021; 37: 2419-2426, https://doi.org/10.1016/j.matpr.2020.08.272.
  • 42. UIC Code 541-3: Brakes – Disc brakes and their application – General conditions for the approval of brake pads. 7th edition, January 2010.
  • 43. UIC Code 541-4: Brakes – Brakes with composite brake blocks – General conditions for the certification of composite brake blocks. 6th edition, November 2020.
  • 44. Urbaniak M, Kardas-Cinal E. Optimization of using recuperative braking energy on a double-track railway line. Transportation Research Procedia 2019; 40: 1208–1215, https://doi.org/10.1016/j.trpro.2019.07.168.
  • 45. Varazhun I, Shimanovsky A, Zavarotny A. Determination of Longitudinal Forces in the Cars Automatic Couplers as Train Electrodynamic Braking. Procedia Engineering 2016; 134: 415-421, https://doi.org/10.1016/j.proeng.2016.01.032.
  • 46. Verma PCh, Menapace L, Bonfanti A, Ciudin R, Gialanella S, Straffelini G. Braking pad-disc system: Wear mechanisms and formation of wear fragments. Wear 2015; 322-323: 251-258, https://doi.org/10.1016/j.wear.2014.11.019.
  • 47. Wahlström J, Gventsadze D, Olander L, Kutelia E, Gventsadze L, Tsurtsumia O, Olofsson U. A pin-on-disc investigation of novel nanoporous composite-based and conventional brake pad materials focussing on airborne wear particles. Tribology International 2011; 44: 1838-1843, https://doi.org/10.1016/j.triboint.2011.07.008.
  • 48. Xiao JK, Xiao SX, Chen J, Zhang C. Wear mechanism of Cu-based brake pad for high-speed train braking at speed of 380 km/h. Tribology International 2020; 150: 106357, https://doi.org/10.1016/j.triboint.2020.106357.
  • 49. Yawas DS, Aku SY, Amaren SG. Morphology and properties of periwinkle shell asbestos-free brake pad. Journal of King Saud University – Engineering Sciences 2016; 28: 103-109, https://doi.org/10.1016/j.jksues.2013.11.002.
  • 50. Yevtushenko AA, Grzes P. Axisymmetric FEA of temperature in a pad/disc brake system at temperature-dependent coefficients of friction and wear. International Communications in Heat and Mass Transfer 2012; 39: 1045-1053, https://doi.org/10.1016/j.icheatmasstransfer.2012.07.025.
  • 51. Zhang P, Zhang L, Wei D, Wu P, Cao J, Shijia C, Qu X. A high-performance copper-based brake pad for high-speed railway trains and its surface substance evolution and wear mechanism at high temperature. Wear 2020; 444-445: 203182, https://doi.org/10.1016/j.wear.2019.203182.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0502124e-a00e-4dea-abbb-eb2929b622d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.