PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies on Curing of an Aluminized Ammonium Perchlorate Composite Propellant Based on Nitrile Butadiene Rubber Using a Quinol Ether of 1,4-Benzoquinone Dioxime

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The isocyanate-based curing agents used for polyurethane are toxic and hygroscopic in nature. In the present work, an alternate approach was adopted, a reaction between the unsaturated rubber having an α-methylene hydrogen atom and a dinitrosobenzene (DNB) - generating system (quinol ether of 1,4-benzoquinone dioxime, QE) without a catalyst, thus generating a cured system. QE is a novel curing agent for propellant applications which imparts the necessary curing. The curing reaction between nitrile butatadiene rubber (NBR) and quinol ether (QE) was studied by FTIR and the results revealed the formation of anil groups (Ar–C=N). The anil group results from the reaction between NBR and DNB, generated on decomposition of QE. Propellant formulations were prepared with variation of the curing agent from 0.2 to 0.5%. The composition and rheological, mechanical, ballistic and thermal properties of the resulting cured systems were investigated. The viscosity and spreadability were suitable for casting. The tensile strength, modulus, and hardness show an increasing trend and the elongation decreases on varying QE from 0.2 to 0.5% in the propellant. However, all of the compositions showed nearly the same burning rate and pressure exponent. The QE based curing system is non-hygroscopic and has extremely low toxicity. The experimental results revealed that the proposed curing agent may find application in explosives and propellants.
Rocznik
Strony
18--38
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • High Energy Material Research Laboratory, Sutarwadi, Pune 411021, India
  • High Energy Material Research Laboratory, Sutarwadi, Pune 411021, India
  • High Energy Material Research Laboratory, Sutarwadi, Pune 411021, India
autor
  • High Energy Material Research Laboratory, Sutarwadi, Pune 411021, India
  • Defence Institute of Advanced Technology, Deemed University, Pune 411025, India
Bibliografia
  • [1] Chen, Y.; Liu, Y.; Shi, L.; Yang, W.; Yao, W. Study on the Synthesis and Interfacial Interaction Performance of Novel Dodecylamine-based Bonding Agents for Composite Solid Propellants. Propellants Explos. Pyrotech. 2015, 40: 50-59.
  • [2] Varghese, T.L.; Krishnamurthy, V.N. The Chemistry and Technology of Solid Rocket Propellants: (Treatise on Solid Propellants). 1st ed., Allied Publishers Pvt. Ltd, New Delhi, 2017, pp. 20-55; ISBN 9789385926334.
  • [3] Banerjee, S.; Ramanan, V.; Malhotra, V. Energetic Composite Solid Propellants. Int. J. Aerospace Mech. Eng. 2017, 4(2): 1-7.
  • [4] Ghee Ang, H.; Pisharath, S. Polymers as Binders and Plasticizers – Historical Perspective. In: Energetic Polymers. Binders and Plasticizers for Enhancing Performance. (Ghee Ang, H.; Pisharath, S., Eds.) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012, pp. 1-18; ISBN 978-3-527-33155-0.
  • [5] Mason, B.P.; Roland, C.M. Solid Propellants. Rubber Chem. Technol. 2019, 92(1): 1-24.
  • [6] Agrawal, J.P. High Energy Materials. Propellants, Explosives and Pyrotechnics. 1st ed., Wiley-VCH, Weinheim, 2010; ISBN 978-3-527-32610-5.
  • [7] Jain, S.; Kshirsagar, D.R.; Khire, V.H.; Kandasubramanian, B. Evaluation of Strontium Ferrite (SrFe12O19) in Ammonium Perchlorate-based Composite Propellant Formulations. Cent. Eur. J. Energ. Mater. 2019, 16(1): 105-121.
  • [8] Jawalkar, S.N.; Mehilal; Ramesh, K.; Radhakrishnan, K.K.; Bhattacharya, B. Studies on the Effect of Plasticiser and Addition of Toluene Diisocyanate at Different Temperatures in Composite Propellant Formulations. J. Hazard. Mater. 2009, 164(2-3): 549-554.
  • [9] Sakovich, G.V. Design Principles of Advanced Solid Propellants. J. Propul. Power 1995, 11(4): 830-837.
  • [10] Gan, L.M.; Chew, C.H. Quinoid Curing of Butyl Rubber and Natural Rubbers. Rubber Chem. Technol. 1983, 56(5): 883-891.
  • [11] Rando, R.J.; Kader, H.A.; Hughes, J.; Hammad, Y.Y. Toluene Diisocyanate Exposure in the Flexible Polyurethane Foam Industry. Am. Ind. Hyg. Assoc. J. 1987, 48(6): 580-585.
  • [12] Sinditskii, V.P.; Chernyi, A.N.; Marchenkov, D.A. Mechanism of Combustion Catalysis by Ferrocene Derivatives. Combustion of Ammonium Perchlorate-Based Propellants with Ferrocene Derivatives. Combust., Explos. Shock Waves (Engl. Transl.) 2014, 50(2): 158-167.
  • [13] Singh, S.; Raveendran, S.; Kshirsagar, D.R.; Gupta, M.; Bhongale,, C. Studies on the High Performance Characteristics of an Aluminized Ammonium Perchlorate Composite Solid Propellant Based on Nitrile Butadiene Rubber. Cent. Eur. J. Energ. Mater. 2021, 18(4): 492-511.
  • [14] Dombe, G.; Mehilal; Bhongale, C.; Singh, P.P.; Bhattacharya, B. Application of Twin Screw Extruder for Continuous Processing of Energetic Materials. Cent. Eur. J. Energ. Mater. 2015, 12(3): 507-522.
  • [15] Babuk, V.A.; Vasailyev, V.A.; Sviridov, V.V. Influence of Solid Propellant Structure on Metal Agglomeration Intra Chamber Processes Combustion and Gas Dynamics of Dispersed System. Proc. 2nd Int. Semin., Saint Petersburg, Russia, 1997, pp. 92-95.
  • [16] Babuk, V.A.; Vasailyev, V.A.; Malakhov, M.S. Condensed Combustion Products at the Burning Surface of Aluminized Solid Propellant. J. Propul. Power 1999, 15(6): 783-793.
  • [17] Klyuchnikov, O.R.; Zaikov, G.E. Low Temperature Vulcanization of Unsaturated Rubbers by C-nitroso System. Int. Polym. Sci. Technol. 2006, 33(8): 51-56.
  • [18] Kondyurin, A.V.; Imankulova, S.A. Interphase Interaction in Adhesion Bonds of Rubbers with a Quinol-type Curing Adhesive. Int. Polym. Sci. Technol. 2001, 28(1): 18-22.
  • [19] Gan, L.M.; Chew, C.H. Vulcanization of Butyl Rubber by p-Quinone Dioxime Dibenzoate. J. Appl. Polym. Sci. 1979, 24: 371-383.
  • [20] Nakanish, K. Infrared Absorption Spectroscopy ‒ Practical, Holden-Day. San Francisco, 1962, p. 222.
  • [21] Bellamy, L.J. The Infrared Spectra of Complex Molecules. Wiley, New York, 1964, p. 304.
  • [22] Alhareb, A.O.; Akil, H.B.M.; Ahmad, Z.A.B. Poly(methyl methacrylate) Denture Base Composites Enhancement by Various Combinations of Nitrile Butadiene Rubber/Treated Ceramic Fillers. J. Thermoplast. Compos. Mater. 2015, 30(8): 1069-1090.
  • [23] Lei, Y.; Fan, Y.; Huo, J. Hydroxyl-terminated Polybutadiene Curing by 1,3-Dipolar Cycloaddition of Energetic Nitrile N-Oxides: Room Temperature Curing Property, Kinetics, Thermodynamics, and Propellant Combustion Characteristics. Propellants Explos. Pyrotech. 2019, 44: 224-233.
  • [24] Komarov, V.F. Catalysis and Inhibition of the Combustion of Ammonium Perchlorate Based Solid Propellants. Combust., Explos. Shock Waves (Engl. Transl.) 1999, 35(6): 670-683.
  • [25] Caveny, L.H.; Pokrocos, L.M.; Lelshain, G.R. High Pressure Burning Rates of Multibase Propellants. Princeton University, Princeton, AMS-1377, 1977, p. 75.
  • [26] Jacobs, P.N.M.; Whitehead, H.M. Decomposition and Combustion of Ammonium Perchlorate. Chem. Rev. 1969, 69: 551-590.
  • [27] Lipanov, A.M.; Zarko, V.E. Survey of Solid Rocket Propulsion in Russia. In: Chemical Rocket Propulsion. A Comprehensive Survey of Energetic Materials. (DeLuca, L.T.; Shimada, T.; Sinditskii, V.P.; Calabro, M., Eds.) Springer Aerospace Technology, 2017; ISBN 978-3-319-27746-2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04f76a3e-b36e-4690-9661-e86f70faba6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.