Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In order to assess Ground penetrating radar (GPR) for imaging the shallow subsurface geometry and characteristics of the fault in Yushu area, details GPR measurements with 25 MHz, 100 MHz and 250 MHz frequencies antenna were firstly conducted in four sites along the Yushu fault after geomorphologic and geological investigation. The 25 MHz profiles delineated an excellent general view of deformation zones at a much wider area and greater depth. While the 100 MHz and 250 MHz data provided more detailed analysis of the shallow subsurface deformation about the geologic structure and the fault, including the stratigraphic structures, the dip angle and direction of the fault plane. The remarkable variation in the pattern and relative amplitude of electromagnetic waveform on the two-dimensional GPR profiles are all obvious and it is considered as the main fault zone with a nearly vertical fault with the dip angle of 70°–85°. High frequency GPR profiles show a good consistency with the trench sections at three sites. The geometry of the main fault zone can be depicted and deduced up to ~ 12 m deep or even deeper on the 25 MHz GPR profile in Yushu area and it is considered to be the result of the movement of active faults. What’s more, the geophysical features on GPR profile associated to the strike-slip fault are further summarized in different geological and geomorphological environment in Yushu area, the study also provides further evidence that GPR is valuable for fault investigation and palaeoseismic study in the Qinghai-Tibet Plateau area.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
501--515
Opis fizyczny
Bibliogr. 59 poz.
Twórcy
autor
- College of Civil Engineering, Henan University of Engineering, Zhengzhou 451159, China
autor
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
autor
- College of Civil Engineering, Henan University of Engineering, Zhengzhou 451159, China
autor
- College of Civil Engineering, Henan University of Engineering, Zhengzhou 451159, China
Bibliografia
- 1. Anchuela ÓP, Lafuente P, Arlegui L, Liesa CL, Simón JL (2016) Geophysical characterization of buried active faults: the Concud Fault (Iberian Chain, NE Spain). Int J Earth Sci 105:2221–2239
- 2. Anderson KB, Spotila JA, Hole JA (2003) Application of geomorphic analysis and ground-penetrating radar to characterization of paleoseismic sites in dynamic alluvial environments: an example from southern California. Tectonophysics 368:25–32
- 3. Bubeck A, Wilkinson M, Roberts GP, Cowie PA, Mccaffrey KJW, Phillips R, Sammonds P (2015) The tectonic geomorphology of bedrock scarps on active normal faults in the Italian Apennines mapped using combined ground penetrating radar and terrestrial laser scanning. Geomorphology 237:38–51
- 4. Busby JP, Merritt JW (1999) Quaternary deformation mapping with ground penetrating radar. J Appl Geophys 41:75–91
- 5. Cahit CY, Erhan A, Maksim B, Mustapha M, Volkan K, Serdar Akyüz H (2013) Application of GPR to normal faults in the Büyük Menderes Graben, western Turkey. J Geodyn 65:218–227
- 6. Chen LC, Wang H, Ran YK (2010a) The Ms7.1 Yushu earthquake surface ruptures and historical earthquakes. Chin Sci Bull 55:1200–1205
- 7. Chen LC et al (2010b) The Ms 7.1 Yushu earthquake surface rupture and large historical earthquakes on the Garze-Yushu Fault. Chin Sci Bull 55:3504–3509
- 8. Christie M, Tsoflias GP, Stockli DF, Black R (2009) Assessing fault displacement and off-fault deformation in an extensional tectonic setting using 3-D ground-penetrating radar imaging. J Appl Geophys 68:9–16
- 9. Demanet D, Renardy F, Vanneste K, Jongmans D, Camelbeeck T, Meghraoui M (2001) The use of geophysical prospecting for imaging active faults in the Roer Graben, Belgium. Geophysics 66:78–89
- 10. Dujardin J-R, Bano M (2013) Topographic migration of GPR data: Examples from Chad and Mongolia. CR Geosci 345:73–80. https://doi.org/10.1016/j.crte.2013.01.003
- 11. Dujardin J-R, Bano M, Schlupp A, Ferry M, Munkhuu U, Tsendayush N, Enkhee B (2014) GPR measurements to assess the Emeelt active fault’s characteristics in a highly smooth topographic context, Mongolia. Geophys J Int 198:174–186
- 12. Ercoli M, Pauselli C, Frigeri A, Forte E, Federico C (2013) “Geophysical paleoseismology” through high resolution GPR data: A case of shallow faulting imaging in Central Italy. J Appl Geophys 90:27–40
- 13. Ercoli M, Pauselli C, Frigeri A, Forte E, Federico C (2014) 3-D GPR data analysis for high-resolution imaging of shallow subsurface faults: the Mt Vettore case study (Central Apennines, Italy). Geophys J Int 198:90–99
- 14. Forte E, Ercoli M, Cinti FR, Pauselli C, Volpe R (2015) Imaging of an active fault: Comparison between 3D GPR data and outcrops at the Castrovillari fault, Calabria, Italy. Interpretation 3:SY57–SY66
- 15. Gan WJ et al (2007) Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J Geophys Res Solid Earth 112:1–14. https://doi.org/10.1029/2005JB004120
- 16. Grasmueck M (1996) 3-D ground-penetrating radar applied to fracture imaging in gneiss. Geophysics 61:1050. https://doi.org/10.1190/1.1444026
- 17. Gross R, Green A, Holliger K, Horstmeyer H, Baldwin J (2002) Shallow geometry and displacements on the San Andreas Fault near Point Arena based on trenching and 3-D georadar surveying. Geophys Res Lett 29:34-31-34-34. https://doi.org/10.1029/2002GL015534
- 18. Grützner C, Reicherter K, Hübscher C, Silva PG (2012) Active faulting and neotectonics in the Baelo Claudia area, Campo de Gibraltar (southern Spain). Tectonophysics 554–557:127–142
- 19. Huang XM, Tian K, Du Y, He ZT, Lei JH, Ma BQ, Xie FR (2015) Late quaternary slip rate of the Yushu Batang fault and its tectonic significance. Acta Scientiarum Naturalium Universitatis Pekinensis 51:65–78
- 20. Jol HM (2009) Ground penetrating radar theory and applications. Elsevier, Amsterdam
- 21. Lehmann F, Green AG (2000) Topographic migration of georadar data. Proc SPIE Int Soc Opt Eng 4084:163–167
- 22. Li YH et al (2013) The geomorphologic and geological marks of the active left-lateral strike-slip fault and the characteristics of geometry and kinematics along the Yushu fault zone in southeastern Tibet. Geol Bull China 32:1410–1422
- 23. Li JC, Wu ZH, Zhang D, Liu XD (2014) Remote sensing image interpretation and tectonic activity study of the main active faults in Yushu area, Qinghai Province. Geol Bull China 33:535–550
- 24. Lorenzo LS, et al (2016) Active faulting Vs other surface displacing complex geomorphic phenomena. Case studies from a tectonically active area, Abruzzi Region, central Apennines, Italy. In: EGU general assembly conference, Vienna, Austria
- 25. Lunina O (2016) Style of deformation in the Mondy active fault zone based on ground-penetrating radar and structural observations (southern East Siberia). In: International Inqua meeting on paleoseismology, active tectonics and archeoseismology, Pescina, Fucino Basin, Italy
- 26. Lunina OV, Gladkov AS, Afonkin AM, Serebryakov EV (2016) Deformation style in the damage zone of the Mondy fault: GPR evidence (Tunka basin, southern East Siberia). Russ Geol Geophys 57:1269–1282
- 27. Lunina OV, Gladkov AS, Gladkov AA (2018) Surface and shallow subsurface structure of the Middle Kedrovaya paleoseismic rupture zone in the Baikal Mountains from geomorphological and ground-penetrating radar investigations. Geomorphology. https://doi.org/10.1016/j.geomorph.2018.03.009
- 28. Ma YS et al (2010) The surface ruptures and the macroscopical epicenter of Yushu MS 7.1 earthquake. J Geomech 16:115–128
- 29. Malik JN, Sahoo AK, Shah AA (2007) Ground-penetrating radar investigation along Pinjore Garden Fault: implication toward identification of shallow subsurface deformation along active fault, NW Himalaya. Curr Sci 93:1422–1427
- 30. Malik JN, Sahoo AK, Shah AA (2010) Paleoseismic evidence from trench investigation along Hajipur fault, Himalayan Frontal Thrust, NW Himalaya: Implications of the faulting pattern on landscape evolution and seismic hazard. J Struct Geol 32:350–361
- 31. Maurya DM, Chouksey V, Joshi PN, Chamyal LS (2013) Application of GPR for delineating the neotectonic setting and shallow subsurface nature of the seismically active Gedi fault, Kachchh, western India. J Geophys Eng 10:034006. https://doi.org/10.1088/1742-2132/10/3/034006
- 32. Maurya DM, Chowksey V, Tiwari P, Chamyal LS (2017) Tectonic geomorphology and neotectonic setting of the seismically active South Wagad Fault (SWF), Western India, using field and GPR data. Acta Geophys 65:1167–1184
- 33. Mcbride JH, Nelson ST, Heiner BD, Tingey DG, Morris TH, Rey KA (2015) Neotectonics of the Sevier Desert basin, Utah as seen through the lens of multi-scale geophysical investigations. Tectonophysics 654:131–155
- 34. Mccalpin J (1996) Paleoseismology. Academic Press, Cambridge
- 35. Mcclymont AF, Villamor P, Green AG (2009) Assessing the contribution of off-fault deformation to slip-rate estimates within the Taupo Rift, New Zealand, using 3-D ground-penetrating radar surveying and trenching. Terra Nova 21:446–451. https://doi.org/10.1111/j.1365-3121.2009.00901.x
- 36. Pauselli C, Federico C, Frigeri A, Orosei R, Barchi MR, Basile G (2010) Ground penetrating radar investigations to study active faults in the Norcia Basin (central Italy). J Appl Geophys 72:39–45
- 37. Pei SP, Chen YS, Feng B, Gao X, Su JR (2013) High-resolution seismic velocity structure and azimuthal anisotropy around the 2010 Ms = 7.1 Yushu earthquake, Qinghai, China from 2D tomography. Tectonophysics 584:144–151. https://doi.org/10.1016/j.tecto.2012.08.020
- 38. Rashed M, Kawamura D, Nemoto H, Miyata T, Nakagawa K (2003) Ground penetrating radar investigations across the Uemachi fault, Osaka, Japan. J Appl Geophys 53:63–75. https://doi.org/10.1016/S0926-9851(03)00028-4
- 39. Reicherter K, Michetti AM, Barroso PGS (2012) Palaeoseismology: historical and prehistorical records of earthquake ground effects for seismic hazard assessment. Environ Eng Geosci 316:1–10. https://doi.org/10.2113/gseegeosci.18.3.309
- 40. Reiss S, Reicherter KR, Reuther CD (2003) Visualization and characterization of active normal faults and associated sediments by high-resolution GPR. Geol Soc Lond Spec Publ 211:247–255
- 41. Salvi S, Cinti FR, Colini L, D’Addezio G, Doumaz F, Pettinelli E (2010) Investigation of the active Celano–L’Aquila fault system, Abruzzi (central Apennines, Italy) with combined ground-penetrating radar and palaeoseismic trenching. Geophys J Roy Astron Soc 155:805–818
- 42. Schneiderwind S, Mason J, Wiatr T, Papanikolaou I, Reicherter K (2016) 3-D visualisation of palaeoseismic trench stratigraphy and trench logging using terrestrial remote sensing and GPR—combining techniques towards an objective multiparametric interpretation. Solid Earth 7:323–340. https://doi.org/10.5194/se-7-323-2016
- 43. Shi F, He H, Densmore AL, Li A, Yang X, Xu X (2016) Active tectonics of the Ganzi-Yushu fault in the southeastern Tibetan Plateau. Tectonophysics 676:112–124. https://doi.org/10.1016/j.tecto.2016.03.036
- 44. Sun H, He H, Wei Z, Shi F, Gao W (2017) Late Quaternary paleoearthquakes along the northern segment of the Nantinghe fault on the southeastern margin of the Tibetan Plateau. J Asian Earth Sci 138:258–271. https://doi.org/10.1016/j.jseaes.2017.02.023
- 45. Tanajewski D, Bakuła M (2016) Application of ground penetrating radar surveys and GPS surveys for monitoring the condition of Levees and Dykes. Acta Geophys 64:1093–1111
- 46. Tapponnier P, Xu ZQ, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang JS (2001) Oblique stepwise rise and growth of the Tibet Plateau. Science 294:1671–1677. https://doi.org/10.1126/science.105978
- 47. Tobita M, Nishimura T, Kobayashi T, Hao KX, Shindo Y (2011) Estimation of coseismic deformation and a fault model of the 2010 Yushu earthquake using PALSAR interferometry data. Earth Planet Sci Lett 307:430–438. https://doi.org/10.1016/j.epsl.2011.05.017
- 48. Wang WL, Wu JP, Fang LH, Wang CZ (2013) Relocation of the Yushu M_S7.1 earthquake and its aftershocks in 2010 from HypoDD. Sci Sin (Terrae) 56:182–191
- 49. Wen XZ, Xu XW, Zheng RZ, Xie YQ, Wan C (2003) Average slip-rate and recent large earthquake ruptures along the Garzê-Yushu fault. Sci China Earth Sci 46:276–288
- 50. Wu ZH, Zhang YQ, Hu DG (2014a) Neotectonics, active tectonics and earthquake geology. Geol Bull China 33:391–402
- 51. Wu ZH et al (2014b) Active faults and earthquake around Yushu in eastern Tibetan Plateau. Geol Bull China 33:419–469
- 52. Wu JW, Huang XM, Xie FR (2017) Late quaternary slip rate of the Garze-Yushu fault zone (Dangjiang Segment). Chin J Geophys 60:3872–3888
- 53. Xu C, Xu X, Shyu JB (2015) Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013. Geomorphology 248:77–92. https://doi.org/10.1016/j.geomorph.2015.07.002
- 54. Yan B, Lin A (2017) Holocene activity and paleoseismicity of the Selaha Fault, southeastern segment of the strike-slip Xianshuihe Fault Zone, Tibetan Plateau. Tectonophysics 694:302–318. https://doi.org/10.1016/j.tecto.2016.11.014
- 55. Zhang KQ et al (2014) A preliminary study of the climate and environment of Yushu area in Qinghai Province based on the carbon-bearing strata in trenches and profiles. Geol Bull China 33:485–496
- 56. Zhang GH, Shan XJ, Feng GC (2016) The 3-D surface deformation, coseismic fault slip and after-slip of the 2010 M w 6.9 Yushu earthquake, Tibet, China. J Asian Earth Sci 124:260–268. https://doi.org/10.1016/j.jseaes.2016.05.011
- 57. Zhou RJ, Ma SH, Chang X (1997a) Active feature of the Ganzi-Yushu fault zone in the late quaternary. Earthq Res China 11:51–63
- 58. Zhou RJ, Wen XZ, Chai CX, Ma SH (1997b) Recent earthquakes and assessment of seismic tendency on the Ganzi-Yushu Fault zone. Seismol Geol 19:115–124
- 59. Zhou CJ, Wu ZH, Nima CR, Li JC, Jiang Y, Liu YH (2014) Structural analysis of the co-seismic surface ruptures associated with the Yushu Ms7.1 earthquake, Qinghai Province. Geol Bull China 33:551–566
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04f0289c-fe8d-4f49-8586-e52c4090803f