# MORPHOLOGICAL AND BIOCHEMICAL FEATURES OF MICROORGANISMS INHABITING THE SURFACES OF PERSONALIZED FEMORAL IMPLANTS

Martyna Leszczewicz<sup>1\*</sup>, Natalia Gniada<sup>1</sup>, Krzysztof Makowski<sup>1,2</sup>, Piotr Komorowski<sup>3,4</sup>, Bogdan Walkowiak<sup>3,4</sup>

 <sup>1</sup> INDUSTRIAL BIOTECHNOLOGY LABORATORY, BIONANOPARK LTD., POLAND
<sup>2</sup> BIOTECHNIKA, POLAND
<sup>3</sup> MOLECULAR AND NANOSTRUCTURAL BIOPHYSICS LABORATORY, BIONANOPARK LTD., POLAND
<sup>4</sup> DIVISION OF BIOPHYSICS, INSTITUTE OF MATERIALS SCIENCE, LODZ UNIVERSITY OF TECHNOLOGY, POLAND

\*E-MAIL: M.LESZCZEWICZ@BIONANOPARK.PL

# [Engineering of Biomaterials 158 (2020) 46]

### Introduction

Estimation and characterization of bioburden on healthcare products is a crucial step in the determination of sterilization parameters [1]. Evaluation of this parameter is also necessary to set up the contamination control program for a sterilization procedure [2]. A thorough knowledge of the physiological and biochemical characteristics of the microorganisms, colonizing the surfaces of medical implants, allows adjusting the method and dose of the sterilizing agent [3]. The study presents the results of the assessment of the biodiversity of microorganisms, colonizing the prototypes of femur implants, immediately after their manufacturing.

## **Materials and Methods**

Five femoral implants were used in the research. Before the analysis, the implants were cleaned from postproduction contamination. The number of facultative nonfastidious, aerobic, spore-forming and anaerobic bacteria, as well as yeasts and moulds, were determined by membrane filtration, according to PN-EN: ISO 11727-1 and Polish Pharmacopoeia, edition X. The morphology of isolated bacteria was observed under the light microscope (BX63, Olympus, Tokyo, Japan) after Gram staining. The biochemical features were identified using Api®ZYM tests (BioMerieux, Marcy-l'Étoile, France), as well as Bactident® Oxidase (Merck, Darmstadt, Germany) and Bactident® Aminopeptidase (Merck, Darmstadt, Germany) following the manufacturer's instructions.

## **Results and Discussion**

The surfaces of the implants were contaminated by bacterial strains. Yeast and moulds were not detected (TABLE 1).

TABLE 1 Determination of bioburden

| Nº          | Number of<br>facultative, non-<br>fastidious,<br>aerobic bacteria | Number of<br>anaerobic<br>bacteria | Number<br>of spore-<br>forming<br>bacteria | Number<br>of yeasts<br>and<br>moulds |
|-------------|-------------------------------------------------------------------|------------------------------------|--------------------------------------------|--------------------------------------|
| cfu/implant |                                                                   |                                    |                                            |                                      |
| 1           | nd                                                                | 2                                  | 1                                          | nd                                   |
| 2           | 4                                                                 | nd                                 | nd                                         | nd                                   |
| 3           | 2                                                                 | nd                                 | nd                                         | nd                                   |
| 4           | nd                                                                | 1                                  | nd                                         | nd                                   |
| 5           | nd                                                                | nd                                 | nd                                         | nd                                   |

nd - not detected

Facultative and aerobic bacteria were the dominant microflora. However, anaerobic and spore-forming bacteria were also present. Their morphologies were described based on microscopic images (FIG. 1).



FIG. 1 An exemplary morphology of isolated bacteria, Gram-positive bacilli (A), Gram-negative rod shaped (B), Gram-positive cocci (C), Gram-negative cocci (D)

Most of the isolated strains were Gram-positive, cocci. We also identified Gram-positive bacilli, Gram-negative cocci and Gram-negative rod-shaped bacteria. Despite the morphological similarities of the Gram-positive cocci, the isolated strains showed slightly different biochemical characteristics. The differences concerned mainly alkaline phosphatase, leucine arylamidase and  $\beta$ -glucosidase. Large variations of enzymatic activities were also demonstrated by Gram-positive bacilli. Inequalities were related to oxidase, valine arylamidase,  $\alpha$ -galactosidase,  $\beta$ -galactosidase and  $\beta$ -glucosidase.

### Conclusions

The bacteria were dominant microflora colonizing the surfaces of the implants. Although the number of tested microorganisms was relatively small, the biochemical and morphological characteristics showed significant diversity. A cursory analysis of bioburden can increase the risk of incorrect adjustment of sterilization conditions and thus, the risk of patient infection.

## Acknowledgements

This work was supported by The National Centre for Research and Development (POIR.04.01.04-00-0058/17-00).

### References

[1] H. Atchia, Guide to Microbiological Control in Pharmaceuticals and Medical Devices, CRC Press (2006) 111-120

[2] S. Moondra, N. Raval *et al.*, Dosage Form Design Parameters. Academic Press (2018) 467-519.

[3] S. Govindaraj, M.S. Muthuraman, Int J ChemTech Res 8 (2015) 897-911.