Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper is discussed the effect of the inoculant mischmetal addition on the microstructure of the magnesium alloy AZ91. The concentration of the inoculant was increased in the samples within the range from 0.1% up to 0.6%. The thermal process was performed with the use of Derivative and Thermal Analysis (DTA). A particular attention was paid to finding the optimal amount of the inoculant, which causes fragmentation of the microstructure. The concentration of each element was verified with use of a spark spectrometer. In addition, the microstructures of every samples were examined with the use of an optical microscope and also was performed an image analysis with a statistical analysis using the NIS - Elements program. The point of those analyses was to examine the differences in the grain diameters of phase αMg and eutectic αMg+γ(Mg17Al12) in the prepared samples as well as the average size of each type of grain by way of measuring their perimeters. This paper is the second part of the introduction into a bigger research on grain refinement of magnesium alloys, especially AZ91. Another purpose of this research is to achieve better microstructure fragmentation of magnesium alloys without the relevant changes of the chemical composition, which should improve the mechanical properties.
Czasopismo
Rocznik
Tom
Strony
45--50
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
- Department of Materials Engineering and Production Systems of Lodz University of Technology, Łódź, Poland
autor
- Department of Materials Engineering and Production Systems of Lodz University of Technology, Łódź, Poland
autor
- Department of Materials Engineering and Production Systems of Lodz University of Technology, Łódź, Poland
autor
- Department of Materials Engineering and Production Systems of Lodz University of Technology, Łódź, Poland
Bibliografia
- [1] Dieringa, H. et al. (2018). Mg Alloys: Challenges and Achievements in Controlling Performance, and Future Application Perspectives. Orlov D., Joshi V., Solanki K., Neelameggham N. (Eds.) Magnesium Technology 2018. Cham. The Minerals, Metals & Materials Series.
- [2] Brown, R.E (2009). Magnesium in the 21 century. Advanced Materials and Processes. 167(1), 31-33.
- [3] Luo, A.A. (2013). Magnesium casting technology for struc-tural applications. Journal of Magnesium and Alloys. 1, 2-22 DOI: 10.1016/j.jma.2013.02.002.
- [4] Mordike, B.L. & Ebert, T. (2001) Magnesium. Properties – applications – potential. Materials Science and Engineering. A302. 37-45. DOI: 10.1016/S0921-5093(00)01351-4.
- [5] Rapiejko, C., Pisarek, B. & Pacyniak, T. (2017). Effect of intensive cooling of alloy AZ91 with a chromium addition on the microstructure and mechanical properties of the cast-ing. Archives of Metallurgy and Materials. 62(4), 2199-2204. DOI: 10.1515/amm-2017-0324.
- [6] Rapiejko, C., Pisarek, B. & Pacyniak, T. (2014). Effect of Cr and V alloy additions on the microstructure and mechanical properties of AM60 magnesium alloy. Archive of Metallurgy and Materials. 59(2), 761-765. DOI: 0.2478/amm-2014-0128.
- [7] Lin, H., Yang, M., Tang, H. & Pan, F. (2018). Effect of minor Sc on the microstructure and mechanical properties of AZ91 Magnesium Alloy. Progress in Natural Science: Ma-terials International. 28, 66-73. DOI: 10.1016/j.pnsc.2018. 01.006.
- [8] Kasinska, J. (2016). Modification influence of mischmetal on fractography fracture of G17CrMo5-5 cast steel samples af-ter the three-point bending test. Metalurgija–Sisak then Za-greb. 55(4), 749-752.
- [9] Kasinska, J. & Skrzypczyk, A. (2018). Fracture energy and fracture morphology after three-point bending test of welded joints made of cast steel designed for use in power sector, with and without the addition of rare earth metals. Metals. 8(2), 115-130. DOI: 10.3390/met8020115.
- [10] Yu, Z., Xiaofeng, H., Ya, L., Zhenduo, M., Ying, M. & Yuan, H. (2017). Effects of samarium addition on as-cast microstructure, grain refinement and mechanical properties of Mg-6Zn-0.4Zr magnesium alloy. Journal of Rare Earths. 355(5), 494-502. DOI: 10.1016/S1002-0721(17)60939-6.
- [11] Zhang, Y., Huang, X., Ma, Y., Chen, T., Li, Y. & Hao, Y. (2017). Effects of Cu addition on microstructure and me-chanical properties of as-cast Mg-6Zn magnesium alloy. China Foundry. 14(4), 251-257. DOI: 10.1007/s41230-017-6094-2.
- [12] Zhang, Y. et al. (2017) The influences of Al content on the microstructure and mechanical properties of as-cast Mg-6Zn magnesium alloys. Materials Science & Engineering A. A686, 93-101. DOI: 10.1016/j.msea.2016.12.122.
- [13] Zhi, H., Qun, H., Hong, Y., Xiaoping, J. & Yuansheng, R. (2016). The influences of Al content on the microstructure and mechanical properties of as-cast Mg-6Zn magnesium al-loys. Rare Metal Materials and Engineering. 45(9), 2275-2281. DOI: 10.1016/S1875-5372(17)30016-4.
- [14] Liu, L. et al. (2017). Rare Earth Element Yttrium Modified Mg-Al-Zn Alloy: Microstructure, Degradation Properties and Hardness. Materials. 10(5), 477-487. DOI: 10.3390/ ma10050477.
- [15] Silva, E.P., Buzolin, R.H., Callegari, B., Warchomicka, F., Requena, G.C. & Pinto, H.C. (2017). Effect of mischmetal additions and solution heat treatments (T4) on the Microstructure and Mechanical Properties of Thixocast ZK60-RE Magnesium Alloys. Trans Tech Publications. 879, 2300-2305. DOI: 10.4028/www.scientific.net/MSF.879. 2300.
- [16] Silva, E.P., Marques, F., Nossa, T.S., Alfaro, U. & Pinto, H.C. (2018). Impact of Ce-base mischmetal on the micro-structure and mechanicalbehavior of ZK60 magnesium cast-ing alloys. Materials Science & Engineering A. 723, 306-313. DOI: 10.1016/j.msea.2018.02.024.
- [17] Xu, Y., Zhang, K. & Lei, J. (2016). Effect of mischmetal on mechanical properties and microstructure of die-cast magne-sium alloy AZ91D. Journal of Rare Earths. 34(7), 742-746. DOI: 10.1016/S1002-0721(16)60086-8.
- [18] Tardif, S., Tremblay, R. & Dubé, D. (2010). Influence of cerium on the microstructure and mechanical properties of ZA104and ZA104 + 0.3Ca magnesium alloys. Materials Science & Engineering A. 527, 7519-7529. DOI:10.1016/ j.msea.2010.08.082.
- [19] Pietrowski, S. (2000). Knowledge compedium of vermicular cast iron. Soldification of Metals and Alloys. 2(44). 279-292
- [20] PN-EN 1753:2001. Magnesium and magnesium alloys. Magnesium alloy ingots and castings.
- [21] Rapiejko, C., Pisarek, B, Czekaj, E. & Pacyniak, T. (2014). Analysis of AM60 and AZ91 Alloy Crystallisation in ceramic moulds by thermal derivative analisys (TDA). Archive of Metallurgy and Materials. 59(4), 1149-1455. DOI: 10.2478/amm-2014-0246.
- [22] Król, M., Tański, T., Matula, G., Snopiński, P. & Tomiczek, A.E. (2015). Analysis of crystallisation process of cast mag-nesium alloys based on thermal derivative analysis. Archives of Metallurgy and Materials. 60(4), 2993-2999. DOI 10.1515/amm-2015-0478.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04eb9132-8fb0-44d6-bea7-bc4a7997547a