PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilization of the SOA Deep Saturation and Power Averaging Effect to Counteract Intra-Channel Crosstalk in DWDM System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Semiconductor Optical Amplifier (SOA) is a key component of cost-effective short/medium range transmission systems. However it can introduce signal distortions. In this paper the authors investigate the possibility to reduce the signal distortions in SOA operating with the multiple wavelength channels. Using numerical simulations the negative influence of the nonlinear effects, namely cross-gain modulation (XGM) and the patterning effect can be reduced in deep SOA saturation regime. The self-healing effect is pronounced for the 4 or more wavelength channels and the transmitted symbol length longer than double of the SOA recovery time.
Rocznik
Tom
Strony
22--28
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
autor
  • Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
  • Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • [1] K. Inoue, “Waveform distortion in a gain-saturated semiconductor optical amplifier for NRZ and Manchester formats”, IEE Proceedings – Optoelectronics, vol. 144, no. 6, pp. 433–433, 1997.
  • [2] IEEE Standard 802.3ba-2010, 18.09.2013 [Online]. Available: http://standards.ieee.org/about/get/802/802.3.html
  • [3] M. J. Conelly, Semiconductor Optical Amplifiers. New York: Springer, 2002.
  • [4] A. A. M. Saleh, “Nonlinear models of travelling-wave optical amplifiers”, Electron. Lett., vol. 24, no. 14, pp. 835–837, 1988.
  • [5] A. Ghazisaeidi, F. Vacondio, A. Bononi, and L. A. Rusch, “Bit patterning in SOAs: Statistical characterization through Multicanonical Monte Carlo simulations”, IEEE J. Quantum Electron., vol. 46, no. 4, pp. 570–578, 2010.
  • [6] P. Doussiere et al., “Clamped gain travelling wave semiconductor optical amplifier for wavelength division multiplexing applications”, in Proc. 14th IEEE Int. Semicond. Laser Conf., Miami, HI, USA, 1994, pp. 185–186.
  • [7] L. H. Spiekman et al., “Transmission of 8 DWDM channels at 20 Gb/s over 160 km of standard fiber using a cascade of semiconductor optical amplifiers”, IEEE Phot. Technol. Lett., vol. 12, no. 6, pp. 717–719, 2000.
  • [8] Y. Sun et al., “Error-free transmission of 32×2.5 Gbit/s DWDM channels over 125 km using cascaded in-line semiconductor optical amplifiers”, Electron. Lett., vol. 35, no. 21, pp. 1863–1865, 1999.
  • [9] H. K. Kim and S. Chandrasekhar, “Reduction of cross-gain modulation in the semiconductor optical amplifier by using wavelength modulated signal”, IEEE Phot. Technol. Lett., vol. 12, no. 10, pp. 1412–1414, 2000.
  • [10] A. H. Guan, H. Yin, and H. L. Fu, “A dispersion management scheme for reducing SOA induced crosstalk in WDMlinks”, Guangzi Xuebao/Acta Photonica Sinica, vol. 38, no. 7, pp. 1790–1793, 2009.
  • [11] C. R. Doerr, C. H. Joyner, M. Zirngibl, L. W. Stulz, and H. M. Presby, “Elimination of signal distortion and crosstalk from carrier density changes in the shared semiconductor amplifier of multifrequency signal sources”, IEEE Phot. Technol. Lett., vol. 7, no. 10, pp. 1131–1133, 1995.
  • [12] J. Jennen, H. De Waardt, and G. Acket, “Modeling and performance analysis of WDM transmission links employing semiconductor optical amplifiers”, IEEE J. Lightw. Technol., vol. 19, no. 8, pp. 1116–1124, 2001.
  • [13] Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “1050-km WDM transmission of 8×10.709 Gb/s DPSK signal using cascaded in-line semiconductor optical amplifier”, IEEE Phot. Technol. Lett., vol. 16, no. 7, pp. 1760–1762, 2004.
  • [14] C. R. Doerr et al., “Simple multichannel optical equalizer mitigating intersymbol onterference for 40-Gb/s non-return-to-zero signals”, IEEE J. Lightw. Technol., vol. 22, no. 1, pp. 249–256, 2004.
  • [15] K. Inoue, “Technique to compensate waveform distortion in a gainsaturated semiconductor optical amplifier using a semiconductor saturable absorber”, Electron. Lett., vol. 34, no. 4, pp. 376–378, 1998.
  • [16] A. A. M. Saleh and I. M. I. Habbab, “Effects of semiconductor optical amplifier nonlinearity on the performance of high-speed intensity-modulation lightwave systems”, IEEE Trans. Commun., vol. 38, no. 6, pp. 839–846, 1990.
  • [17] M. J. Connelly, “Wideband semiconductor optical amplifier steadystate numerical model”, IEEE J. Quantum Electron., vol. 37, no. 3, pp. 439–447, 2001.
  • [18] G. P. Agrawal, Fiber-Optic Communication System, 4th ed. New York: Wiley, 2010.
  • [19] R. M. Jopson et al., “Measurement of carrier-density mediated intermodulation distortion in an optical amplifier”, Electron. Lett., vol. 23, no. 25, pp. 1394–1395, 1987.
  • [20] K. Inoue, “Crosstalk and its power penalty in multichannel transmission due to gain saturation in a semiconductor laser amplifier”, IEEE J. Lightw. Technol., vol. 7, no. 7, pp. 1118–1124, 1987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04eaf081-8cd8-445d-95f7-fd98063c2554
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.