PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comments on “A New Transient Attack on the Kish Key Distribution System”

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A recent IEEE Access Paper by Gunn, Allison and Abbott (GAA) proposed a new transient attack against the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system. The attack is valid, but it is easy to build a defense for the KLJN system. Here we note that GAA’s paper contains several invalid statements regarding security measures and the continuity of functions in classical physics. These deficiencies are clarified in our present paper, wherein we also emphasize that a new version of the KLJN system is immune against all existing attacks, including the one by GAA.
Rocznik
Strony
321--331
Opis fizyczny
Bibliogr. 50 poz., rys.
Twórcy
autor
  • Texas A&M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128, USA
  • Uppsala University, Department of Engineering Sciences, P.O. Box 534, SE-75121 Uppsala, Sweden
Bibliografia
  • [1] Yuen, H. (2016). Security of quantum key distribution. IEEE Access, 4, 724-749.
  • [2] Makarov, V., Bourgoin, J.P., Chaiwongkhot, P., Gagne, M., Jennewein, T., Kaiser, S., Kashyap, R., Legre, M., Minshull, C., Sajeed, S. (2015). Laser damage creates backdoors in quantum communications. ArXiv, 1510.03148, (submitted for publication).
  • [3] Kish, L.B. (2006). Totally secure classical communication utilizing Johnson(-like) noise and Kirchoff’s law. Physics Letters A, 352, 178-182.
  • [4] Cho, A. (2005). Simple noise may stymie spies without quantum weirdness. Science, 309, 2148.
  • [5] Kish, L.B. (2006). Protection against the man-in-the-middle-attack for the Kirchhoff-loop-Johnson(-like)- noise cipher and expansion by voltage-based security. Fluctuation and Noise Letters, 6, L57-L63.
  • [6] Scheuer, J., Yariv, A. (2006). A classical key-distribution system based on Johnson (like) noise-how secure? Physics Letters A, 359, 737-740.
  • [7] Hao, F. (2006). Kish’s key exchange scheme is insecure. IEE Proceedings - Information Security, 153, 141-142.
  • [8] Liu, P.L. (2009). A new look at the classical key exchange system based on amplified Johnson noise. Physics Letters A, 373, 901-904.
  • [9] Bennett, C.H., Riedel, C.J. (2013). On the security of key distribution based on Johnson-Nyquist noise. ArXiv, 1303.7435.
  • [10] Kish, L.B., Mingesz, R. (2006). Totally secure classical networks with multipoint telecloning (teleporation) of classical bits through loops with Johnson-like noise. Fluctuation and Noise Letters, 6, C9-C21.
  • [11] Mingesz, R., Gingl, Z., Kish, L.B. (2008). Johnson(-like) noise Kirchhoff-loop based secure classical communicator characteristics, for ranges of two to two thousand kilometers, via model-line. Physics Letters A, 372, 978-984.
  • [12] Gunn, L.J., Allison, A., Abbott, D. (2014). A directional wave measurement attack against the Kish key distribution system. Scientific Reports, 4, 6461.
  • [13] Kish, L.B., Granqvist, C.G. (2014). Elimination of a second-law-attack, and all cable-resistance-based attacks, in the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system. Entropy, 16, 5223-5231.
  • [14] Chen, H.P., Gonzalez, E., Saez, Y., Kish, L.B. (2015). Cable capacitance attack against the KLJN secure key exchange. Information, 6, 719-732.
  • [15] Gunn, L.J., Allison, A., Abbott, D. (2015). A new transient attack on the Kish key distribution system. IEEE Access, 3, 1640-1648.
  • [16] Chen, H.P., Mohammad, M., Kish, L.B. (2016). Current injection attack against the KLJN secure key exchange, accepted for publication. Metrol. Meas. Syst., 23(2), 173−181.
  • [17] Kish, L.B. (2006). Response to Feng Hao’s paper “Kish’s key exchange scheme is insecure”. Fluctuation and Noise Letters, 6, C37-C41.
  • [18] Kish, L.B. (2006). Response to Scheuer-Yariv: “A classical key-distribution system based on Johnson (like) noise-how secure?” Physics Letters A, 359, 741-744.
  • [19] Kish, L.B., Scheuer, J. (2010). Noise in the wire: The real impact of wire resistance for the Johnson (-like) noise based secure communicator. Physics Letters A, 374, 2140-2144.
  • [20] Kish, L.B., Abbott, D., Granqvist, C.G. (2013). Critical analysis of the Bennett-Riedel attack on secure cryptographic key distributions via the Kirchhoff-law-Johnson-noise scheme. PloS One, 8, e81810. Open access.
  • [21] Chen, H.P., Kish, L.B., Granqvist, C.G. (2014). On the “cracking” scheme in the paper “A directional coupler attack against the Kish key distribution system” by Gunn, Allison and Abbott. Metrol. Meas. Syst., 21(3), 389-400.
  • [22] Kish, L.B., Gingl, Z., Mingesz, R., Vadai, G., Smulko, J., Granqvist, C.G. (2015). Analysis of an attenuator artifact in an experimental attack by Gunn-Allison-Abbott against the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system. Fluctuation and Noise Letters, 14, 1550011.
  • [23] Chen, H.P., Kish, L.B., Granqvist, C.G., Smulko J. (2015), Waves in a short cable at low frequencies, or just hand-waving? What does physics say? 23rd International Conference on Noise and Fluctuations (ICNF 2015), Xi’an, China, Jun. 2-5, 2015, DOI: 10.1109/ICNF.2015.7288604; ArXiv, 1505.02749.
  • [24] Kish, L.B., Granqvist, C.G. (2014). On the security of the Kirchhoff-law-Johnson-noise (KLJN) communicator. Quantum Information Processing, 13, 2213−2219.
  • [25] Mingesz, R. (2013). Experimental study of the Kirchhoff-law-Johnson-noise secure key exchange. International Journal of Modern Physics: Conference, 33, 1460365, DOI: 10.1142/S2010194 514603652.
  • [26] Kish, L.B. (2013). Enhanced secure key exchange systems based on the Johnson-noise scheme. Metrol. Meas. Syst., 20(2), 191-204.
  • [27] Smulko, J. (2014). Performance analysis of the “intelligent" Kirchhoff-law-Johnson-noise secure key exchange. Fluctuation and Noise Letters, 13, 1450024.
  • [28] Liu, P.L. (2009). A key agreement protocol using band-limited random signals and feedback. Journal of Lightwave Technology, 27, 5230-5234.
  • [29] Kish, L.B., Horvath, T. (2009). Notes on recent approaches concerning the Kirchhoff-law-Johnson-noisebased secure key exchange. Physics Letters A, 373, 2858-2868.
  • [30] Vadai, G., Mingesz, R., Gingl, Z. (2015). Generalized Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system using arbitrary resistors. Scientific Reports, 5, 13653.
  • [31] Kish, L.B., Granqvist, C.G. (2016). Random-resistor-random-temperature KLJN key exchange. Metrol. Meas. Syst., 23(1), 3-11.
  • [32] Planck, M. (1949). Scientific Autobiography and Other Papers. New York: Philosophical Library.
  • [33] Horváth, T., Kish, L.B., Scheuer, J. (2011). Effective privacy amplification for secure classical communications. EPL (Europhysics Letters), 94, 28002.
  • [34] Maurer, U.M. (1993). Secret key agreement by public discussion from common information. IEEE Transaction on Information Theory, 39, 733-742.
  • [35] Wyner, A.D. (1975). The wire-tap channel. Bell Systems Technology Journal, 54, 1355-1387.
  • [36] Chorti, A., Poor, H.V. (2012). Achievable secrecy rates in physical layer secure systems with a helping interferer. International Conference on Computing, Networking and Communications (ICNC), Maui, Hawaii, 18-22, DOI: 10.1109/ICCNC.2012.6167408.
  • [37] Shannon, C.E. (1949). Communication theory of secrecy systems. Bell Systems Technical Journal, 28, 656-715.
  • [38] Gilbert, G., Hamrick, M. (2002). Secrecy, computational loads and rates in practical quantum cryptography. Algorithmica, 34, 314-339.
  • [39] Saez, Y., Kish, L.B. (2013). Errors and their mitigation at the Kirchhoff-law-Johnson-noise secure key exchange. PloS One, 8, e81103.
  • [40] Saez, Y., Kish, L.B., Mingesz, R., Gingl, Z., Granqvist, C.G. (2014). Bit errors in the Kirchhoff-law-Johnson-noise secure key exchange. International Journal of Modern Physics: Conference Series, 33, 1460367.
  • [41] Diffie, W., Hellman, M.E. (1976). New directions in cryptography. IEEE Transaction on Information Theory, 22, 644-654.
  • [42] Mayers, D. (2001). Unconditional security in quantum cryptography. Journal of the ACM, 48, 351-406.
  • [43] Landau, L.D., Lifshitz, E.M. (1969). Mechanics. Pergamon, Oxford.
  • [44] Landau, L.D., Lifshitz, E.M. (1971). The Classical Theory of Fields. Pergamon, Oxford.
  • [45] Landau, L.D., Lifshitz, E.M., Pitaevskiǐ, L.P. (1984). Electrodynamics of Continuous Media. Butterworth- Heinemann. Oxford.
  • [46] Landau, L.D., Lifshitz, E.M. (1980). Statistical Physics. Butterworth-Heinemann. Oxford.
  • [47] Lifshitz, E.M., Pitaevskiǐ, L.P. (1980). Statistical Physics, Part 2, Theory of the Condensed State. Butterworth-Heinemann. Oxford.
  • [48] Lifshitz, E.M., Pitaevskiǐ, L.P. (1981). Physical Kinetics. Pergamon, Oxford.
  • [49] Landau, L.D., Lifshitz, E.M. (1986). Theory of Elasticity. Butterworth-Heinemann. Oxford.
  • [50] Landau, L.D., Lifshitz, E.M. (1987). Fluid Mechanics. Butterworth-Heinemann, Oxford.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04e83d64-651c-4001-b296-77949d7172b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.