PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On simultaneous strong proximinality

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we extend the notions of simultaneous strong proximinality and simultaneous strong Chebyshevity available in Banach spaces to metric spaces and prove that if W is a simultaneously approximatively compact subset of a metric space (X, d) then W is simultaneously strongly proximinal. The converse holds if the set of all best simultaneous approximations to every bounded subset S of X from W is compact. We show that simultaneously strongly Chebyshev sets are precisely the sets which are simultaneously strongly proximinal and simultaneously Chebyshev. How simultaneous strong proximinality is transmitted to and from quotient spaces has also been discussed when the underlying spaces are metric linear spaces.
Rocznik
Tom
Strony
47--55
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • Department of Mathematics, BBK DAV College for Women, Amritsar
autor
  • Department of Mathematics, Guru Nanak Dev University, Amritsar
Bibliografia
  • [1] Bandyopadhyay P., Li Y., Lin B.L., Narayana D., Proximinality in Banach Spaces, J. Math. Anal. Appl., (2008)(341), 309-317.
  • [2] Cheng Li Xin, Luo Zheng Hua, Zhang Wen, Zheng Ben Tuo, On proximinality of convex sets in superspaces, Acta Math. Sin., 32(6)(2016), 633-642.
  • [3] Cheney E.W., Wulbert D.E., The existence and uniqueness of best approximation, Math Scand., 24(1969), 113-140.
  • [4] Govindarajulu P., On best simultaneous approximation, J. Math. Phy. Sci., 18(1984), 345-351.
  • [5] Goel D.S., Holland A.S.B., Nasim C., Sahney B.N., On best simultaneous approximation in normed linear spaces, Can. Math. Bulletin, 17(1974), 523-527.
  • [6] Godefroy G., Indumathi V., Strong proximinality and polyhedral spaces, Rev. Mat. Complut., 14(2001), 105-125.
  • [7] Gupta S., Narang T.D., Simultaneous strong proximinality in Banach spaces, Turk. J. Math., 41(2017), 725-732.
  • [8] Iranmanesh M., Mohebi H., On best simultaneous approximation in quotient spaces, Anal. Theory Appl., 23(2007), 35-49.
  • [9] Martin M., On proximinality of subspaces and the linearity of the set of norm-attaining functionals of Banach spaces, J. Funct. Anal., 278(4)(2020), 108353, 14 pp.
  • [10] Narang T.D., Gupta S., Best simultaneous approximation in quotient spaces, Applied Analysis in Biological and Physical Sciences, (2016). Springer pp. 339-349.
  • [11] Narayana D., Strong proximinality and renorming, P. Am. Math. Soc., 134(2005), 1167-1172.
  • [12] Rawashdeh M., Al-Sharif Sh., Domi W.B., On the sum of best simultaneously proximinal subsapces, Hacet. J. Math. Stat., 43(2014), 595-602.
  • [13] Smith M.A., Some examples concerning rotundity in Banach spaces, Math. Ann., 233(1978), 155-161.
  • [14] Zhang Z.H, Liu C.Y, Zhou Z., Some examples concerning proximinality in Banach spaces, J. Approx. Theory, 200(2015), 136-143.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04dc0ba0-bf1a-4dd2-9a2b-e860fca4117d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.