PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Complete kinematic analysis of the Stewart-Gough platform by unit quaternions

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza kinematyczna platformy Stewarta-Gougfla z zastosowaniem kwaternionów
Języki publikacji
EN
Abstrakty
EN
In this paper, a complete analysis of Stewart-Gough platform kinematics by unit quaternions is proposed. Even when unit quaternions have been implemented in different applications (including a kinematic analysis of the Stewart platform mechanism), the research regarding the application of this approach is limited only to the analysis of some issues related to the kinematic properties of this parallel mechanism. For this reason, a complete analysis of the Stewart-Gough platform is shown. The derivation of the inverse and forward kinematics of the Stewart platform using unit quaternions shows that they are suitable to represent the orientation of the upper platform due to their simplicity, equivalence, and compact representation as compared to rotation matrices. Then, the leg velocities are derived to compute these values under different conditions.
PL
W niniejszym artykule zaproponowano analizę kinematyki platformy Stewarta-Gougha z zastosowaniem kwaternionów. Mimo ze kwaterniony znalazły zastosowanie w różnych aplikacjach (w tym w analizie kinematycznej mechanizmu platformy Stewarta), to ich zastosowanie ogranicza się jedynie do analizy własności kinematycznych mechanizmów równoległych. Z tego powodu przedstawiono pełną analizę kinematyczną platformy Stewarta-Gougha. Uzyskanie kinematyki prostej i odwrotnej platformy Stewarta z zastosowaniem kwaternionów pokazuje, ze są one odpowiednie do reprezentowania orientacji górnej platformy. Przede wszystkim cechują się prostotą oraz zwartą reprezentacją w porównaniu do macierzy obrotów. Następnie wyznacza się prędkości podpor, w celu obliczenia wartości w różnych warunkach.
Rocznik
Strony
59--69
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Universidad Tecnologica Centroamericana (UNITEC) Tegucigalpa, Honduras
  • Universitat Politecnica de Catalunya, Department of Mathematics, Spain
  • josep.maria.rossell@upc.edu
Bibliografia
  • 1. Campa R., Camarillo K., Arias L., 2006, Kinematic modeling and control of robot manipulators via unit quaternions: Application to a spherical wrist. 45th IEEE Conference on Decision and Control 2006, 6474-6479.
  • 2. Cao Y., Zhou H., Ji W., Liu M., Liu X., 2010, Orientation-singularity and orientation capability analysis of Stewart platform based on unit quaternion representation. 2010 IEEE International Conference on Mechatronics and Automation, 452-457.
  • 3. Chen C.-T, Renn J.-C, Yan Z.-Y., 2011, Experimental identification of inertial and friction parameters for electro-hydraulic motion simulators. Mechatronics 21(1), 1-10.
  • 4. Chen S.-H., Fu, L.-C, 2006, The forward kinematics of the 6-6 Stewart platform using extra sensors. 2006 IEEE International Conference on Systems, Man and Cybernetics, 6, 4671-4676.
  • 5. Chen S.-H., Fu L.-C, 2008, Output feedback control with a nonlinear observer based forward kinematics solution of a Stewart platform. 2008 IEEE International Conference on Systems, Man and Cybernetics, 3150-3155.
  • 6. Chen S.-H., Fu L.-C, 2013, Output feedback sliding mode control for a Stewart platform with a nonlinear observer-based forward kinematics solution. IEEE Transactions on Control Systems Technology, 21(1), 176-185.
  • 7. Choi M., Kim W., Yi B.-L, 2007, Trajectory planning in 6-degrees--of-freedom operational space for the 3-degrees-of-freedom mechanism conqured by constraining the Stewart platform structure. 2007 International Conference on Control, Automation and Systems, 1222-1227.
  • 8. Chou J., 1992, Quaternion kinematic and dynamic differential equations. IEEE Transactions on Robotics and Automation 8(1), 53-64.
  • 9. Dongya Z., Shaoyuan L., Feng G., 2007, Continuous finite time control for Stewart platform with terminal sliding mode. 2007 Chinese Control Conference, 27-30.
  • 10. Duindam V., Stramigioli S., 2008, Singularity-free dynamic equations of open-chain mechanisms with general holonomic and nonholonomic joints. IEEE Transactions on Robotics 24(3), 517-526.
  • 11. Fresk E., Nikolakopoulos G., 2013, Full quaternion based attitude control for a quadrotor. 2013 European Control Conference (ECC), 3864-3869.
  • 12. Funda J., Paul R., 1990, A computational analysis of screw transformations in robotics. IEEE Transactions on Robotics and Automation 6(3), 348-356.
  • 13. Funda J., Taylor R., Paul R., 1990, On homogeneous transforms, quaternions, and computational efficiency. IEEE Transactions on Robotics and Automation 6(3), 382-388.
  • 14. Ghobakhloo A., Eghtesad M., Azadi M., 2006, Adaptive-robust control of the Stewart-Gough platform as a six DOF parallel robot. 2006 World Automation Congress, 1-6.
  • 15. He R., Zhao Y., Yang S., Yang S., 2010, Kinematic-parameter identification for serial-robot calibration based on POE formula. IEEE Transactions on Robotics 26(3), 411-423.
  • 16. Huang C.-I., Fu L.-C, 2004, Adaptive backstepping tracking control of the Stewart platform. 2004 43rd IEEE Conference on Decision and Control (CDC), 5, 5228-5233.
  • 17. Huang C.-I., Fu L.-C, 2005, Smooth sliding mode tracking control of the Stewart platform. Proceedings of 2005 IEEE Conference on Control Applications (CCA 2005), 43-48.
  • 18. li P., Wu H., 2001, A closed-form forward kinematics solution for the 6-6P Stewart platform. IEEE Transactions on Robotics and Automation 17(4), 522-526.
  • 19. Liu M.-J., Li C-X., Li C.-N., 2000, Dynamics analysis of the Gough-Stewart platform manipulator. IEEE Transactions on Robotics and Automation 16(1), 94-98.
  • 20. Lopes A.M., 2009, Dynamic modeling of a Stewart Platform using the generalized momentum approach. Communication in Nonlinear Science Numerical Simulation 14, 3389-3401.
  • 21. Lou Y., Zhang Y., Huang R., Chen X., Li Z., 2014, Optimization algorithms for kinematically optimal design of parallel manipulators. IEEE Transactions on Automation Science and Engineering 11(2), 574-584.
  • 22. Morell A., Acosta L., Toledo J., 2012, An artificial intelligence approach to forward kinematics of Stewart platforms. 2012 20th Mediterranean Conference on Control and Automation (MED), 433-438.
  • 23. Morell A., Tarokh M., Acosta L, 2013, Solving the forward kinematics problem in parallel robots using support vector regression. Engineering Applications of Artificial Intelligence 26(7), 1698-1706.
  • 24. Nanua P., Waldron K., 1989, Direct kinematic solution of a Stewart platform. Proceedings of the 1989 IEEE International Conference on Robotics and Automation, 431-437.
  • 25. Omran A., Kassem A., 2011, Optimal task space control design of a Stewart manipulator for aircraft stall recovery. Aerospace Science and Technology 15(5), 353-365.
  • 26. Portman V, Chapsky V., Shneor Y., 2012, Workspace of parallel kinematics machines with minimum stiffness limits: Collinear stiffness value based approach. Mechanism and Machine Theory 49, 67-86.
  • 27. Quoc L.H., Thanh N.M., 2013, Definition of linearly dependent screws in singularity configurations of parallel mechanisms and experimental based on computing of the system. 2013 13th International Conference on Control, Automation and Systems (ICCAS), 1100-1107.
  • 28. Spong M.W., Hutchinson S., Vidyasagar M., 2006, Robot Modeling and Control. lohn Wiley and Sons.
  • 29. Su Y., Zheng C, Duan B.Y., 2002, Singularity analysis of a 6 DOF Stewart platform using genetic algorithm. IEEE International Conference on Systems, Man and Cybernetics 7.
  • 30. Tari H., Su H.-J., Hauenstein J., 2012, Classification and complete solution of the kinetostatics of a compliant Stewart-Gough platform. Mechanism and Machine Theory 49, 177-186.
  • 31. Tu K.-Y., Wu T.-C, Lee T.-T, 2004, A study of Stewart platform specifications for motion cueing systems. 2004 IEEE International Conference on Systems, Man and Cybernetics 7, 3950-3955.
  • 32. Wang Z., He J., Gu H., 2011, Forward kinematics analysis of a six--degree-of-freedom Stewart platform based on independent component analysis and Nelder-Mead algorithm. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 41(3), 589-597.
  • 33. Yang C, Zheng S., Lan X., Han J., 2011, Adaptive robust control for spatial hydraulic parallel industrial robot. Procedia Engineering 15, 331-335.
  • 34. Zhang G.-E, 2012, Classification of direct kinematics to planar generalized Stewart platforms. Computational Geometry 45(8), 458-473.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04db6262-4480-485c-9255-af04be3dd44b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.