PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Evaluation of the Effect of External Conditions During Crystallization and Solidification on the Final Structure of AlSi7Mg

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abstract The paper deals with the possibilities of influencing the final microstructure of aluminium alloy castings by changing the external conditions of crystallization and solidification. Aluminum alloys, especially Al-Si alloys, are nowadays one of the most used non-ferrous metal alloys, especially due to their mass application in the automotive field. It is in this industry that extreme emphasis is placed on the quality of cast parts with regard to safety. For this reason, a key production parameter is the mastery of the control of the resulting microstructure of the castings and the associated internal quality, which is subject to high demands defined by international standards. The aim of the experiment of this paper is to evaluate the effect of different preheating of the metal mould on the resulting structure and hardness of test castings made of AlSi7Mg0.3 material. The hardness measurement will be evaluated on a hardness tester. The parameter SDAS, Microporosity, Content of excluded eutectic will be evaluated. Dependencies will be found and plotted.
Rocznik
Strony
118--123
Opis fizyczny
Bibliogr. 20 poz., il., tab., wykr.
Twórcy
  • VSB - Technical University of Ostrava, Czech Republic
  • VSB - Technical University of Ostrava, Czech Republic
  • VSB - Technical University of Ostrava, Czech Republic
Bibliografia
  • [1] Chen, R., Shi, Y-F., Xu, Q-Y. & Liu, B-CH. (2014). Effect of cooling rate on solidification parameters and microstructure of Al−7Si−0.3Mg−0.15Fe alloy. Transactions of Nonferrous Metals Society of China. 24(6), 1645-1652. https://doi.org/10.1016/S1003-6326(14)63236-2.
  • [2] Władysiak, R. (2004). Linear expansion of multicomponent silumins. Archives of Foundry. 4(14), 550-557. ISSN 1642- 5308.
  • [3] Molina, R., Amalberto, P. & Rosso, M. (2011). Mechanical characterization of aluminum alloys for high temperature applications Part1: Al-Si-Cu alloys. Metallurgical Science and Technology. 29(1), 5-15.
  • [4] Sims, Z.C., Rios, O.R, Weiss., D., Turchi, P.E., Perron, A., Lee, J.R, Li, T.T., Hammons., J.A., Bagge-Hansen, M., Willey, T.M., An, K., Chen, Y., King, A.H. & McCall S.K. (2017). High performance aluminum–cerium alloys for high temperature applications. Materials Horizons. 4(6), 1070- 1078. DOI:10.1039/C7MH00391A.
  • [5] Peter, I., Varga, B. & Rosso, M. (2011). Dimensional stability analysis in Al-Si alloys. Metalurgia International. 16(4), 5-9.
  • [6] Stojanovic, B., Bukvic, M. & Epler, I. (2018). Application of aluminum and aluminum alloys in engineering. Applied Engineering Letters. 3(2), 52-62. e-ISSN: 2466-4847. https://doi.org/10.18485/aeletters.2018.3.2.2.
  • [7] Tupaj, M., Orłowicz, A., W., Mróz, M. & Trytek, A. (2015). The effect of refining and the cooling rate on microstructure and mechanical properties of AlSi7Mg alloy. Archives of Foundry Engineering. 15(3spec.), 83-86. ISSN (1897-3310).
  • [8] Bhouri, M. & Mzali, F. (2020). Analysis of thermo-elastic and physical properties of recycled 2017 Aluminium Alloy/Gp composites: thermal management application. Materials Research Express. 7(2), 026546, 1-12. DOI 10.1088/2053-1591/ab5eeb.
  • [9] Lichioiu, I., Varga, B., Geaman, V. (2010). Analysis of phase transformation in hipoeutectic Al-Si alloys. Bulletin of the Transilvania University of Brasov.: Engineering Sciences. Series I. 3(52), 189-194.
  • [10] Assar, Abdel-Wahed M. (1992). On the interfacial heat transfer coefficient for cylindrical ingot casting in a metal mould. Journal of materials science letters. 11(9), 601-606. https://doi.org/10.1007/BF00728622.
  • [11] Pastirčák, R., Ščury J. & Moravec, J. (2017). The effects of pressure during the crystallization on properties of the AlSi12 alloy. Archives of Foundry Engineering. 17(3), 103- 106. DOI: 10.1515/afe-2017-0099.
  • [12] Hu, X., AI, F. & Yan, H. (2012) Influences of pouring temperature and cooling rate on microstructure and mechanical properties of casting Al-Si-Cu aluminum alloy. Acta Metallurgica Sinica, 25(4), 272-278. DOI: 10.11890/1006-7191-124-272.
  • [13] Brůna, M. & Kucharčík, L. (2014). Progressive method of porosity prediction for aluminum castings. Materials and Technology. 48(6), 949-952. ISSN 1580-2949.
  • [14] Lipiński, T. (2008). Improvement of mechanical properties of AlSi7Mg alloy with fast cooling homogenous modifier. Archives of Foundry Engineering. 8(1), 85-88. ISSN (1897- 3310).
  • [15] Krishnan, P. K., Christy, J.V., Arunachalam, R., Mourad, A. H.I., Muraliraja, R., Al-Maharbi, M., Venkatraman, M. & Chandra, M.M. (2019). Production of aluminum alloy-based metal matrix composites using scrap aluminum alloy and waste materials: Influence on microstructure and mechanical properties. Journal of Alloys and Compounds. 784, 1047- 1061. https://doi.org/10.1016/j.jallcom.2019.01.115.
  • [16] Toccia, M., Pola, A., Vecchia, G.M.L. & Modigell, M. (2015). Characterization of a new aluminium alloy for the production of wheels by hybrid aluminium forging. Procedia Engineering. 109, 303-311. https://doi.org/10.1016/ j.proeng.2015.06.237.
  • [17] Moldovan, P., Popescu, G., Dobra, G. & Stanica, C. (2003). Microstructure evaluation and microporosity formation in AlSi7Mg 0.3 alloys. Light Metals 2003, 937-944.
  • [18] Loginova, I.S., Sazerat, M.V., Loginov, P.A., Pozdniakov, A.V., Popov N.A. &. Solonin, A.N. (2020). Evaluation of microstructure and hardness of novel Al-Fe-Ni alloys with high thermal stability for laser additive manufacturing. Journal of the Minerals, Metals & Materials Society. 72, 3744-3752. https://doi.org/10.1007/s11837-020-04321-2.
  • [19] Lehmhus, D., Hünert, D., Mosler, U., Ulrich, M. & Weise, J. (2019). Effects of eutectic modification and grain refinement on microstructure and properties of PM AlSi7 metallic foams. Metals. 9(12), 1241, 1-34. https://doi.org/10.3390/met9121241.
  • [20] Branzei, F-S. Butu, M., Moldovan, P. & Usurelu, E-M. (2010). Microstructure characterization of AlSi7Mg0.3 gas treated alloy. In DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, 20 – 23 October 2010. Vienna, Austria: DAAAM International.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04d6b3bf-b256-4b5e-aa2a-5a8199d01649
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.