PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inclusion of construction and demolition waste as a coarse aggregate and a cement addition in structural concrete design

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dissociating economic growth from the use of natural resources is imperative to the sustainable development of the construction industry. The use of secondary raw materials by processing and managing construction and demolition waste (C&DW) is one of the major challenges to transition to a circular economy. This study assessed the effect of simulta- neously using cement additioned with the ceramic (fired clay-based) fraction of C&DW and recycled mixed aggregate (RMA) in concrete manufacture by analysing fresh concrete workability, density and air content and hardened concrete compressive, flexural and splitting tensile strength. Regression and variance analyses were run on the findings to determine the effect of RMA and cement type and their interaction on the dependent variables. The percentage of RMA was observed to be the most significant determinant for concrete density and air content. Early age compressive strength was impacted by cement type, although strength in the later age materials was comparable to that of concrete manufactured with conventional cement. The combined effect of cement type and percent- age of RMA appeared to have no significant effect on tensile or flexural strength. On the contrary, the differences observed in these properties were due to the separate effect of each factor. The findings showed that the use of cement containing C&DW additions and up to 50% RMA did not substantially compromise concrete performance.
Rocznik
Strony
1338--1352
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Construction, School of Engineering, University of Extremadura, UEx-CSIC Partnering Unit, Institute for Sustainable Regional Development (INTERRA), 10003 Cáceres, Spain
  • Department of Construction, School of Engineering, University of Extremadura, UEx-CSIC Partnering Unit, Institute for Sustainable Regional Development (INTERRA), 10003 Cáceres, Spain
autor
  • Department of Construction, School of Engineering, University of Extremadura, UEx-CSIC Partnering Unit, Institute for Sustainable Regional Development (INTERRA), 10003 Cáceres, Spain
  • Materials Recycling Department, Eduardo Torroja Institute for Construction Science, Spanish National Research Council (CSIC), 28033 Madrid, Spain
autor
  • Department of Construction, School of Engineering, University of Extremadura, UEx-CSIC Partnering Unit, Institute for Sustainable Regional Development (INTERRA), 10003 Cáceres, Spain
Bibliografia
  • [1] P.S. Lovato, E. Possan, D.C.C.D. Molin, Â.B. Masuero, J.L.D. Ribeiro, Modeling of mechanical properties and durability of recycled aggregate concretes, Constr. Build. Mater. 26 (2012) 437–447. , http://dx.doi.org/10.1016/j.conbuildmat.2011.06.043.
  • [2] M. Bernardo, M.C. Gomes, J. de Brito, Demolition waste generation for development of a regional management chain model, Waste Manag. 49 (2016) 156–169. , http://dx. doi.org/10.1016/j.wasman.2015.12.027.
  • [3] Asensio Eloy, Medina César, Frías Moisés, M.I. Sánchez de Rojas, Characterization of ceramic-based construction and demolition waste: use as pozzolan in cements, J. Am. Ceram. Soc. 99 (2016) 4121–4127. , http://dx.doi.org/10.1111/jace.14437.
  • [4] Environment European Commission. (2017). http://ec.europa. eu/environment/waste/studies/mixed_waste.htm. (accessed Feb 24, 2019).
  • [5] E. Commission, EU Approach to Sustainable Development | European Commission,https://ec.europa.eu/info/strategy/ international-strategies/global-topics/sustainable- development- goals/eu-approach-sustainable-development_en, 2018 (accessed Mar 10, 2019).
  • [6] R.V. Silva, J. de Brito, R.K. Dhir, Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production, Constr. Build. Mater. 65 (2014) 201–217. , http://dx.doi.org/10.1016/j.conbuildmat.2014.04.117.
  • [7] V.W.Y. Tam, M. Soomro, A.C.J. Evangelista, A review of recycled aggregate in concrete applications (2000–2017), Constr. Build. Mater. 172 (2018) 272–292. , http://dx.doi.org/ 10.1016/j.conbuildmat.2018.03.240.
  • [8] I. Martínez-Lage, F. Martínez-Abella, C. Vázquez-Herrero, J.L. Pérez-Ordóñez, Properties of plain concrete made with mixed recycled coarse aggregate, Constr. Build. Mater. 37 (2012) 171– 176. , http://dx.doi.org/10.1016/j.conbuildmat.2012.07.045.
  • [9] B. Cantero, I.F. Sáez del Bosque, A. Matías, C. Medina, Statistically significant effects of mixed recycled aggregate on the physical-mechanical properties of structural concretes, Constr. Build. Mater. 185 (2018) 93–101. , http:// dx.doi.org/10.1016/j.conbuildmat.2018.07.060.
  • [10] C. Medina, W. Zhu, T. Howind, M.I. Sánchez de Rojas, M. Frías, Influence of mixed recycled aggregate on the physical — mechanical properties of recycled concrete, J. Clean. Prod. 68 (2014) 216–225. , http://dx.doi.org/10.1016/j.jclepro.2014.01.002.
  • [11] B. Mas, A. Cladera, T. del Olmo, F. Pitarch, Influence of the amount of mixed recycled aggregates on the properties of concrete for non-structural use, Constr. Build. Mater. 27 (2012) 612–622. , http://dx.doi.org/10.1016/j.conbuildmat.2011.06.073.
  • [12] E. Asensio, C. Medina, M. Frías, M.I. Sánchez de Rojas, Clay-based construction and demolition waste as a pozzolanic addition in blended cements. Effect on sulfate resistance, Constr. Build. Mater. 127 (2016) 950–958. , http://dx.doi.org/ 10.1016/j.conbuildmat.2016.10.047.
  • [13] M. Frías, M.I. Sánchez de Rojas, E. Asensio, C. Medina, Ceramic Waste Useful for Cement Manufacture, Obtention Proceeding and Cements That Are Included, ES20133415, 2014.
  • [14] M. Frías, M.I. Sánchez de Rojas, E. Asensio, C. Medina, Sanitary Ware Waste for Cements Manufacture, Obtention Proceeding and Cements That Are Included, PCT/ES2014/ 070406, 2014.
  • [15] S. Kou, C. Poon, F. Agrela, Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures, Cem. Concr. Compos. 33 (2011) 788–795. , http://dx.doi.org/10.1016/j.cemconcomp.2011.05.009.
  • [16] S.C. Kou, C.S. Poon, D. Chan, Influence of fly ash as cement replacement on the properties of recycled aggregate concrete, J. Mater. Civ. Eng. 19 (2007) 709–717. , http://dx.doi. org/10.1061/(ASCE)0899-1561(2007)19:9(709).
  • [17] V. Letelier, E. Tarela, P. Muñoz, G. Moriconi, Combined effects of recycled hydrated cement and recycled aggregates on the mechanical properties of concrete, Constr. Build. Mater. 132 (2017) 365–375. , http://dx.doi.org/10.1016/j. conbuildmat.2016.12.010.
  • [18] V. Letelier, J. Ortega, P. Muñoz, E. Tarela, G. Moriconi, Influence of waste brick powder in the mechanical properties of recycled aggregate concrete, Sustainability 10 (2018) 1037.
  • [19] European Committee for Standardization, EN 197, in: Cement. Part 1: Composition, Specifications and Conformity Criteria for Common Cements, 2011.
  • [20] European Committe for Standardization, EN 12620, in: Aggregates for Concrete, 2013.
  • [21] Comisión Permanente del Hormigón, Instrucción Hormigón Estructural, EHE-08 (Spanish Code on Structural Concrete), 2008.
  • [22] D.C. Teychenné, R.E. Franklin, Design of Normal Concrete Mixes, 2010, . p. 42.
  • [23] European Committee for Standardization, EN 12350, in: Testing Fresh Concrete. Part 6: Density, 2009.
  • [24] European Committee for Standardization, EN 12350, in: Testing Fresh Concrete. Part 7: Air Content - Pressure Methods, 2009.
  • [25] European Committee for Standardization, EN 12350, in: Testing Fresh Concrete. Part 2: Slump-test, 2009.
  • [26] European Committee for Standardization, EN 12390, in: Testing Hardened Concrete. Part 7: Density of Hardened Concrete, 2001.
  • [27] European Committee for Standardization, EN-12390, in: Testing Hardened Concrete. Part 3: Compressive Strength of Test Specimens, 2009.
  • [28] European Committee for Standardization, EN 12390, in: Testing Hardened Concrete. Part 6: Tensile Splitting Strength of Test Specimens, 2010.
  • [29] European Committee for Standardization, EN 12390, in: Testing Hardened Concrete. Part 5: Flexural Strength of Test Specimens, 2009.
  • [30] International Commision on Illumination, CIE, Technical Report: Colorimetry, third edition, 2014.
  • [31] European Committee for Standardization, EN 12390, in: Testing Hardened Concrete. Part 1: Shape, Dimentsions and Other Requirements for Specimens and Moulds, 2001.
  • [32] European Committe for Standardization, EN 12390, in: Testing Hardened Concrete. Part 2: Making and Curing Specimens for Strength Tests, 2009.
  • [33] M.B. Wilk, S.S. Shapiro, An Analysis of Variance Test for Normality (complete Samples), 1965.
  • [34] European Committee for Standardization, EN 206, in: Concrete. Part 1: Specification, Performance, Production and Conformity, 2008.
  • [35] A. Barbudo, J. de Brito, L. Evangelista, M. Bravo, F. Agrela, Influence of water-reducing admixtures on the mechanical performance of recycled concrete, J. Clean. Prod. 59 (2013) 93– 98. , http://dx.doi.org/10.1016/j.jclepro.2013.06.022.
  • [36] J. de Brito, F. Alves, Concrete with recycled aggregates: the Portuguese experimental research, Mater. Struct. 43 (2010) 35–51. , http://dx.doi.org/10.1617/s11527-010-9595-7.
  • [37] K.R. Akça, Ö. Çakir, M. Ipek, Properties of polypropylene fiber reinforced concrete using recycled aggregates, Constr. Build. Mater. 98 (2015) 620–630. , http://dx.doi.org/10.1016/j. conbuildmat.2015.08.133.
  • [38] Z. Ge, Y. Wang, R. Sun, X. Wu, Y. Guan, Influence of ground waste clay brick on properties of fresh and hardened concrete, Constr. Build. Mater. 98 (2015) 128–136. , http://dx. doi.org/10.1016/j.conbuildmat.2015.08.100.
  • [39] D. Matias, J. de Brito, A. Rosa, D. Pedro, Mechanical properties of concrete produced with recycled coarse aggregates — influence of the use of superplasticizers, Constr. Build. Mater. 44 (2013) 101–109. , http://dx.doi.org/10.1016/j.conbuildmat.2013.03.011.
  • [40] M.G. Beltran, F. Agrela, A. Barbudo, J. Ayuso, A. Ramirez, Mechanical and durability properties of concretes manufactured with biomass bottom ash and recycled coarse aggregates, Constr. Build. Mater. 72 (2014) 231–238. , http://dx.doi.org/10.1016/j. conbuildmat.2014.09.019.
  • [41] A. López-Uceda, J. Ayuso, M. López, J. Jimenez, F. Agrela, M. Sierra, Properties of non-structural concrete made with mixed recycled aggregates and low cement content, Materials 9 (2016) 74.
  • [42] C. Medina, W. Zhu, T. Howind, M.I.S. de Rojas, M. Frías, Influence of interfacial transition zone on engineering properties of the concrete manufactured with recycled ceramic aggregate, J. Civ. Eng. Manag. 21 (2015) 83–93. , http://dx.doi.org/10.3846/13923730.2013.802727.
  • [43] C. Medina, W. Zhu, T. Howind, M. Frías, M.I. Sánchez de Rojas, Effect of the constituents (asphalt, clay materials, floating particles and fines) of construction and demolition waste on the properties of recycled concretes, Constr. Build. Mater. 79 (2015) 22–33. , http://dx.doi.org/10.1016/j. conbuildmat.2014.12.070.
  • [44] I.F. Sáez del Bosque, W. Zhu, T. Howind, A. Matías, M.I. Sánchez de Rojas, C. Medina, Properties of interfacial transition zones (ITZs) in concrete containing recycled mixed aggregate, Cem. Concr. Compos. 81 (2017) 25–34. , http://dx.doi.org/10.1016/j.cemconcomp.2017.04.011.
  • [45] S. Subasi, H. Öztürk, M. Emiroglu, Utilizing of waste ceramic powders as filler material in self-consolidating concrete, Constr. Build. Mater. 149 (2017) 567–574. , http://dx.doi.org/ 10.1016/j.conbuildmat.2017.05.180.
  • [46] M. Bravo, J. de Brito, J. Pontes, L. Evangelista, Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants, J. Clean. Prod. 99 (2015) 59–74. , http://dx.doi.org/10.1016/j. jclepro.2015.03.012.
  • [47] D.M. Kannan, S.H. Aboubakr, A.S. El-Dieb, M.M. Reda Taha, High performance concrete incorporating ceramic waste powder as large partial replacement of Portland cement, Constr. Build. Mater. 144 (2017) 35–41. , http://dx.doi.org/ 10.1016/j.conbuildmat.2017.03.115.
  • [48] L. Evangelista, J. de Brito, Durability performance of concrete made with fine recycled concrete aggregates, Cem. Concr. Compos. 32 (2010) 9–14. , http://dx.doi.org/10.1016/j. cemconcomp.2009.09.005.
  • [49] J. Yang, Q. Du, Y. Bao, Concrete with recycled concrete aggregate and crushed clay bricks, Constr. Build. Mater. 25 (2011) 1935– 1945. , http://dx.doi.org/10.1016/j.conbuildmat.2010.11.063.
  • [50] J. Xiao, W. Li, D.J. Corr, S.P. Shah, Effects of interfacial transition zones on the stress–strain behavior of modeled recycled aggregate concrete, Cem. Concr. Res. 52 (2013) 82–99. , http://dx.doi.org/10.1016/j.cemconres.2013.05.004.
  • [51] K. Liu, J. Yan, Q. Hu, Y. Sun, C. Zou, Effects of parent concrete and mixing method on the resistance to freezing and thawing of air-entrained recycled aggregate concrete, Constr. Build. Mater. 106 (2016) 264–273. , http://dx.doi.org/ 10.1016/j.conbuildmat.2015.12.074.
  • [52] E. Asensio, C. Medina, M. Frías, M.I. Sánchez de Rojas, Design of eco-efficient cements bearing construcion and demolition wastes as a pozzolanic, J. Clean. Prod. (2019) [under review].
  • [53] C. Medina, P.F.G. Banfill, M.I. Sánchez de Rojas, M. Frías, Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/ demolition waste, Constr. Build. Mater. 40 (2013) 822–831. , http://dx.doi.org/10.1016/j.conbuildmat.2012.11.112.
  • [54] G. Andreu, E. Miren, Experimental analysis of properties of high performance recycled aggregate concrete, Constr. Build. Mater. 52 (2014) 227–235. , http://dx.doi.org/10.1016/j. conbuildmat.2013.11.054.
  • [55] B. González-Fonteboa, F. Martínez-Abella, Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties, Build. Environ. 43 (2008) 429–437. , http://dx.doi.org/10.1016/j.buildenv.2007.01.008.
  • [56] S. Manzi, C. Mazzotti, M.C. Bignozzi, Short and long-term behavior of structural concrete with recycled concrete aggregate, Cem. Concr. Compos. 37 (2013) 312–318. , http:// dx.doi.org/10.1016/j.cemconcomp.2013.01.003.
  • [57] European Committee for Standardization, EN 1992, in: Eurocode 2: Desing of Concrete Structures. Part 1-1: General Rules and Rules for Buildings, 2016.
  • [58] W.S.S.G. Wyszecki, Color Science: Concepts and Methods, Quantitative Data and Formulae, second edition, John Wiley & Sons, Inc, United States of America, 1982, . p. 950n.d.
  • [59] A. Kappel, L.M. Ottosen, G.M. Kirkelund, Colour, compressive strength and workability of mortars with an iron rich sewage sludge ash, Constr. Build. Mater. 157 (2017) 1199–1205. , http:// dx.doi.org/10.1016/j.conbuildmat.2017.09.157.
  • [60] M. Frías, M.I. Sanchez de Rojas, R. García, A. Juan Valdés, C. Medina, Effect of activated coal mining wastes on the properties of blended cement, Cem. Concr. Compos. 34 (2012) 678–683. , http://dx.doi.org/10.1016/j.cemconcomp.2012.02.006.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04d439bf-080e-40a9-9910-a6c102c63aa6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.