dr inż. GRZEGORZ WIŚNIEWSKI dr inż. MARCIN HABRYCH Politechnika Wrocławska

prof. dr hab. inż. BOGDAN MIEDZIŃSKI dr inż. ARTUR KOZŁOWSKI mgr inż. JULIAN WOSIK Instytut Technik Innowacyjnych EMAG

Praca transformatorów przekształtnikowych zasilających kopalniane maszyny wyciągowe

W artykule przedstawiono wyniki badań dotyczących zmian wartości wielkości elektrycznych transformatorów zasilających kopalnianą maszynę wyciągową podczas różnych warunków pracy wyciągu klatkowego. Szczególną uwagę zwrócono na zakres odkształceń przebiegów prądowych i napięciowych oraz związane z nimi wartości strat mocy w transformatorach, powodowanych wpływem wyższych harmonicznych, jak również oddziaływaniem generowanych harmonicznych na sieć zasilającą. Sformułowano odpowiednie wnioski praktyczne.

1. WSTĘP

Zastosowanie transformatorów mocy do zasilania układów przekształtnikowych związane jest zawsze z ich narażeniem na oddziaływanie wyższych harmonicznych zarówno prądu, jak i napięcia. Transformator bowiem w takich przypadkach spełnia rolę filtru zaporowego ze wszystkimi tego konsekwencjami energetycznymi wpływającymi w sposób degradujący na jego trwałość użytkową [1, 3, 4, 5, 6]. Szczególnie wrażliwe są coraz powszechniej stosowane transformatory "suche" (żywiczne) z wymuszonym chłodzeniem powietrznym po przekroczeniu określonej wartości temperatury, odpowiednio niższej od dopuszczalnej długotrwale dla izolacji uzwojeń (np. 130°C). Znaczne i pojawiające się często gradienty temperatury podczas pracy maszyny wyciągowej wpływają niekorzystnie nie tylko na właściwości izolacyjne uzwojeń i rdzenia, lecz również są źródłem znacznych naprężeń mechanicznych w materiałach współpracujących ze sobą elementów uzwojeń i rdzenia. Jest to szczególnie istotne przy wzroście zawartości wyższych harmonicznych i może w efekcie doprowadzić do przedwczesnego uszkodzenia się transformatora [1, 6, 2]. Dobór transformatora tzw.

"przewymiarowanego" (tj. o wartości mocy znamionowej wyższej od wymaganej dla układu napędowego) rozwiązuje problem tylko częściowo, a przy tym jest on bardzo kosztowny. Nie zapobiega ponadto przenoszeniu się wyższych harmonicznych do sieci zasilającej [2].

Badania wykonano dla wybranego kopalnianego wyciągu klatkowego w warunkach jego stosunkowo niewielkiego obciążenia, nieprzekraczającego ok. 50% mocy znamionowej. Związane to było z dostępnością wyciągu do badań jedynie w dniu wolnym od pracy.

Szczególną uwagę zwrócono na zakres i charakter odkształceń przebiegów prądowych i napięciowych oraz związane z nimi wartości strat mocy w transformatorach, jak również na efekt przenoszenia wyższych harmonicznych do sieci zasilającej. Sformułowano odpowiednie wnioski praktyczne.

2. ZAKRES I SPOSÓB PRZEPROWADZENIA BADAŃ

Do badań wytypowano układ zasilania maszyny wyciągowej klatkowej składający się z dwóch transformatorów suchych o takich samych parametrach znamionowych prądów i napięć (i takim samym okresie eksploatacji), ale o różnych grupach połączeń, wynoszących odpowiednio Dd_0 oraz Dy_{11} . Napęd maszyny wyciągowej stanowił silnik prądu stałego obcowzbudny, zasilany z szeregowo połączonych przekształtników [7]. Napięcia fazowe i prądy fazowe mierzono i rejestrowano przy pomocy karty pomiarowej oraz układu komputerowego w jednej i tej samej fazie po obu stronach transformatorów, tak jak pokazano to na rys. 1.

Z uwagi na możliwość rewersyjnej pracy maszyny wyciągowej badania wykonano dla jazdy klatki za-

równo w dół, jak i do góry dla trzech ustalonych wartości prędkości, wynoszących odpowiednio 1m/s (tzw. prędkość rewizyjna), 6 m/s oraz 12 m/s (prędkość maksymalna). Analizę zawartości wyższych harmonicznych w prądach i napięciach wraz z obliczeniami wartości współczynników THD_u oraz THD_I przeprowadzano w warunkach występowania w miarę ustalonych przebiegów mierzonych wielkości fizycznych. Podczas badań wyłączona była kompensacja mocy biernej po stronie zasilania układu napięciem 6 kV.

*Rys. 1. Uproszczony schemat elektryczny połączeń układu zasilania i układu pomiarowego maszyny wyciągowej klatkowej; I*_p(I₁), I_w(I₂) – prąd mierzony po stronie pierwotnej i wtórnej transformatorów, $U_p(U_1)$, $U_w(U_2)$ – napięcie po stronie pierwotnej i wtórnej transformatora [opracowanie własne]

3. WYNIKI BADAŃ I WNIOSKI

Przebiegi wartości chwilowych prądów i napięć fazowych w wybranej fazie w transformatorze TA.1 (Dy₁₁) podczas cyklu pracy obejmującego rozruch, jazdę ustaloną z prędkością 12 m/s do góry oraz hamowanie pokazano dla przykładu na rys. 2. Wynika z nich wyraźnie, iż największe odkształcenie przebiegu napięcia pierwotnego ma miejsce podczas rozruchu i praktycznie zanika podczas hamowania napędu. Intensywność zaś odkształcenia przebiegu prądowego zmienia się w odwrotnej kolejności (rys. 3).

Rys. 2. Przebiegi prądów i napięć fazowych w transformatorze TA.1 (Dy₁₁) podczas jazdy klatki do góry (rozruch, prąd ustalony, hamowanie) z prędkością 12 m/s; 1, 2, 3 –punkty pomiarowe wybrane do analizy, I_p, I_w– prąd mierzony po stronie pierwotnej i wtórnej transformatora, U_p, U_w– napięcie [opr. własne]

k[-]

0.8

0.4

0.2 (V) 1(V) 0

-0.2

-0.4

-0.6

-0.8

Rys. 3. Przebiegi prądów i napięć fazowych po stronie pierwotnej w transformatorze TA.1 (Dy₁₁) podczas jazdy klatki do góry z prędkością 12 m/s; 1, 2, 3 –punkty pomiarowe wybrane do analizy, a – rozruch, b – praca ustalona, c – hamowanie [opracowanie własne]

12

14

x 10⁵

10

W przebiegach wartości prądów i napięć po stronie wtórnej transformatora widać natomiast zmianę odkształcenia obu wielkości fizycznych, ale przede wszystkim – przebiegu prądowego (rys. 4).

Rys. 4. Przebiegi prądów i napięć fazowych po stronie wtórnej w transformatorze TA.1 (Dy₁₁) podczas jazdy klatki do góry z prędkością 12 m/s; 1, 2, 3 – punkty pomiarowe wybrane do analizy: a) – rozruch, b) – praca ustalona, c) – hamowanie [opracowanie własne]

Z przebiegów mocy (zwłaszcza czynnej) można zauważyć częściowo rewersyjny w tym przypadku charakter pracy układu napędowego, charakteryzujący się w takich momentach większą wartością mocy wtórnej P_w nad pierwotną P_P (rys. 5). Straty mocy czynnej i biernej w transformatorze są znaczne i obliczone dla przyjętego przedziału czasowego (jak zaznaczono na rys. 5. i 6.) wynoszą około 66 kW i ok. 518 kVAr w jednej fazie.

*Rys. 5. Zmiana wartości mocy czynnej (w jednej fazie) transformatora TA.1 (Dy*₁₁) podczas cyklu pracy jak na rys. 2.; P_p , P_w – moc czynna pierwotna i wtórna [opracowanie własne]

*Rys. 6. Zmiana wartości mocy biernej (w jednej fazie) transformatora TA.1 (Dy*₁₁) podczas cyklu pracy jak na rys. 2.; Q_p , Q_w – moc bierna po stronie pierwotnej i wtórnej [opracowanie własne]

W efekcie zmiany wartości mocy czynnej i biernej podczas pracy napędu kąt przesunięcia fazowego pomiędzy napięciem i prądem pierwotnym (podobnie wtórnym) ulega również odpowiedniej zmianie (rys. 7), w efekcie czego transformator (widziany z zacisków pierwotnych) stanowi dla źródła zasilania odbiornik indukcyjny, ale o zmiennej w czasie pracy wartości indukcyjności (poboru mocy biernej). Jest to ważne z punktu widzenia realizacji efektywnej kompensacji mocy biernej układu zasilającego średniego napięcia.

Rys. 7. Zmiana kąta przesunięcia fazowego po stronie pierwotnej φ_p i wtórnej φ_w transformatora TA.1 (Dy₁₁) podczas cyklu pracy, jak na rys. 2. [opracowanie własne]

Zmianę wartości skutecznej prądu obciążenia (w jednej fazie) transformatora TA.1 (Dy₁₁) po stronie pierwotnej i wtórnej (dla analizowanego cyklu pracy napędu z rys. 2.) pokazano dla przykładu na rys. 8. Odpowiadające temu zmiany wartości napięcia zasilającego transformatora oraz napięcia zasilającego przekształtnik można prześledzić na rys. 9. Napięcie zasilające na szynach 6 kV zmalało, jak widać, o około 4% (przy wyłączonym układzie kompensacji mocy biernej).

Rys. 8. Zmiana wartości skutecznej prądu pierwotnego I_p i wtórnego I_w w jednej fazie transformatora TA.1 podczas jazdy klatki do góry z prędkością 12 m/s (cykl pracy jak na rys. 2.) [opracowanie własne]

Rys. 9. Zmiana wartości skutecznej napięcia międzyfazowego pierwotnego U_p na szynach rozdzielni i napięcia fazowego U_w po stronie wtórnej transformatora TA.1 (Dy_{11}) podczas cyklu pracy jak na rys. 2. [opracowanie własne]

Przebiegi prądów i napięć transformatora TA.2 (Dd_0) dla ciągłej pracy rewersyjnej układu, co ma miejsce na przykład podczas jazdy klatki w dół

z prędkością 12 m/s, pokazano dla przykładu na rys. 10.

Rys. 10. Przebiegi prądów i napięć w transformatorze TA.2 podczas jazdy klatki w dół z prędkością 12 m/s; $1 - punkt pomiarowy wybrany do analizy, I_p, I_w - prąd mierzony po stronie pierwotnej i wtórnej transformatora,$ $<math>U_p, U_w - napięcie pierwotne i wtórne [opracowanie własne]$

Wartości mocy czynnej i biernej po stronie pierwotnej transformatora są niższe niż po stronie wtórnej (rys. 11 i 12). Wyższe są jednak wartości strat obu mocy w transformatorze – o około 5% w porównaniu do strat w warunkach pracy silnikowej układu napędowego. Efekt rewersji widać wyraźnie również wtedy, gdy porównuje się wartości prądu pierwotnego i wtórnego, co dla przypadku pracy z rys. 10. pokazano na rys. 13.

Rys. 11. Zmiana wartości mocy czynnej w czasie (w jednej fazie) transformatora TA.2 (Dd₀) podczas jazdy klatki w dół z prędkością 12 m/s; P_p, P_w – moc czynna pierwotna i wtórna, cykl pracy jak na rys. 10. [opracowanie własne]

Rys. 12. Zmiana wartości mocy biernej jednej fazy transformatora TA.2 (Dd₀) w czasie jazdy klatki w dół z prędkością 12 m/s; Q_p, Q_w – moc po stronie pierwotnej i wtórnej, cykl pracy jak na rys. 10. [opracowanie własne]

Rys. 13. Zmiana wartości prądu pierwotnego I_p i wtórnego I_w (w jednej fazie transformatora TA.2) podczas jazdy klatki w dół z prędkością 12 m/s, cykl pracy jak na rys 10. [opracowanie własne]

Pomiary i analiza wyższych harmonicznych wykazały, że w napięciu pierwotnym występuje głównie harmoniczna podstawowa, zaś współczynnik THD_u nie przekracza 3%, niezależnie ani od kierunku ruchu (góra, dół), ani od prędkości jazdy (1-12 m/s) wyciągu klatkowego. Podobnie dominujący udział w prądzie pierwotnym ma harmoniczna podstawowa (ok. 95%), zaś współczynnik THD_I nie osiąga wartości wyższych od 29%, przy czym w prądzie tym występują tylko harmoniczne nieparzyste rzędu 5, 7, 11, 13, 15 itp., co ilustruje rys. 14.

Rys. 14. Średnia zawartość wyższych harmonicznych w prądzie oraz napięciu pierwotnym i wtórnym transformatorów podczas jazdy klatki do góry i/lub w dół z prędkością 12 m/s [opracowanie własne]

W napięciu wtórnym również przeważający udział ma harmoniczna podstawowa (około 90%) w związku z obecnością harmonicznych nieparzystych (5, 7...). Wartość współczynnika THD_u nie przekracza tutaj 19%. Przebieg zaś prądu wtórnego jest odkształcony w bardzo istotny sposób (THD_I \approx 99,8%) w związku z zawartością harmonicznych podzielnych przez 3, tj. 3, 6, 9, 12 itp. (rys. 15, 16).

Udział wyższych harmonicznych w prądzie wtórnym praktycznie nie ulega zmianie w zależności ani od prędkości ruchu, ani od kierunku jazdy. Jak wynika z przeprowadzonych pomiarów, wyższe harmoniczne zawarte w prądzie wtórnym (tj. 3, 6, 9, 12, 15, 18 itd.) w ogóle nie są transformowane do obwodu pierwotnego (I_1) transformatorów z uwagi na ich wytłumienie w uzwojeniach połączonych w trójkąt. Harmoniczne zaś występujące w prądzie pierwotnym I_1 (5, 7, 11, 13, 17...) generowane są pod wpływem harmonicznych występujących w przebiegach napięcia wtórnego U_2 .

Rys. 15. Średnia zawartość wyższych harmonicznych w prądzie oraz napięciu pierwotnym i wtórnym transformatorów podczas jazdy klatki do góry i/lub w dół z prędkością 6 m/s [opracowanie własne]

Rys. 16. Średnia zawartość wyższych harmonicznych w prądzie oraz napięciu pierwotnym i wtórnym transformatorów podczas jazdy klatki do góry i/lub w dół z prędkością 1 m/s [opracowanie własne]

4. PODSUMOWANIE

Wartości strat mocy czynnej w transformatorach zasilających moduły przekształtnikowe maszyny wyciągowej, powodowane oddziaływaniem wyższych harmonicznych zawartych w prądach i napięciach, są dość znaczące (zwiększają się z czasem trwania eksploatacji) i zmieniają się podczas cyklu pracy maszyny. Można przyjąć, że dla badanych transformatorów są one równe 10% mocy znamionowej podczas pobierania energii z sieci zasilającej (zazwyczaj jazda klatki do góry) i około 15% podczas jej oddawania do sieci (głównie jazda klatki w dół).

Moduły przekształtnikowe podczas pracy maszyny wyciągowej nie zawsze obciążają się równomiernie (zwłaszcza przy małych prędkościach maszyny). Związane z tym jest nieznaczne nierównomierne obciążanie się współpracujących transformatorów, czemu towarzyszą odpowiednie fluktuacje przepływu mocy w ich obwodach pierwotnych i wtórnych.

Napięcie zasilające obwody pierwotne transformatorów (6 kV) praktycznie zawiera tylko harmoniczną podstawową. Wartość THD_u nie przekracza 3% niezależnie od mocy obciążenia maszyny wyciągowej oraz kierunku i prędkości ruchu klatki. W prądzie pierwotnym występują harmoniczne rzędu 5, 7, 11, 13 itp., generowane pod wpływem wyższych harmonicznych widocznych w przebiegach napięcia wtórnego, natomiast harmoniczne zawarte w prądzie wtórnym I_2 nie są w ogóle transformowane do obwodu pierwotnego z uwagi na ich wytłumianie w uzwojeniach połączonych w trójkąt. Ograniczenie wartości strat mocy czynnej (w transformatorach przekształtnikowych) powodowanych wyższymi harmonicznymi jest możliwe jedynie przy zastosowaniu odpowiednich nadążnych aktywnych filtrów mocy zainstalowanych po stronie wtórnej (niskiego napięcia), z której zasilane są przekształtniki. Zastosowanie filtrów aktywnych umożliwia również wytłumienie efektu przenoszenia przez transformatory wyższych harmonicznych prądów (i napięć) do sieci zasilającej średniego napięcia.

Literatura

- Girgis A., Maleram E., Nims J.: Evaluation of temperature rise of distributed transformer in the presence of harmonic distortion. Electric Power System Research, vol. 20, 1990, no 1, pp. 15-22.
- 2. IEEE C57.96, Guide for loading dry-type distribution and power transformer.
- Jayla K., Rak J., Gala M., Kepinski M.: Loss in power transformers supplying heavy industrial receivers (in polish). Elektroenergetyka 2011, no 3 (191), pp. 46-56.
- Kefalas T.D., Kladas A.G.: *Harmonic impact and distribution* transformer no-load loss. IEEE Trans. on Industrial Electronics, vol. 57, 2010, no 1, pp. 193-200.
- Sadati S.B., Yousefi H., Darvishi B., Tahani A.: Comparison of distribution transformer loss and capacity under linear and harmonic loads, Proc. 2nd PECon08, Johor Baharu, Malaysia, December 2008.
- Said D.M., Nor K.M.: Effect of harmonics and distribution transformer, Proc. AUPEC 08, 2008, paper P-107, pp. 1-5.
- Szklarski L., Zarudzki J.: *Electric hoisting machines* (in polish), PWN, Warszawa-Kraków 1998.
- Wosik J., Kozlowski A., Kalus M., Miedzinski B.: *The efficiency* of the active power filters in high power DC drive systems, Proc. Int.Conf. on Power Systems, Energy, Enwironment-PSEE 2014, 22-24 February 2014, Interlacken, Switzerland.

Artykul został zrecenzowany przez dwóch niezależnych recenzentów.