PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Power System State Estimation Accuracy Enhancement Using Temperature Measurements of Overhead Line Conductors

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Power system state estimation is a process of real-time online modeling of an electric power system. The estimation is performed with the application of a static model of the system and current measurements of electrical quantities that are encumbered with an error. Usually, a model of the estimated system is also encumbered with an uncertainty, especially power line resistances that depend on the temperature of conductors. At present, a considerable development of technologies for dynamic power line rating can be observed. Typically, devices for dynamic line rating are installed directly on the conductors and measure basic electric parameters such as the current and voltage as well as non-electric ones as the surface temperature of conductors, their expansion, stress or the conductor sag angle relative to the plumb line. The objective of this paper is to present a method for power system state estimation that uses temperature measurements of overhead line conductors as supplementary measurements that enhance the model quality and thereby the estimation accuracy. Power system state estimation is presented together with a method of using the temperature measurements of power line conductors for updating the static power system model in the state estimation process. The results obtained with that method have been analyzed based on the estimation calculations performed for an example system - with and without taking into account the conductor temperature measurements. The final part of the article includes conclusions and suggestions for the further research.
Rocznik
Strony
183--192
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wzory
Twórcy
autor
  • Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Nadbystrzycka 38A, 20-618 Lublin, Poland
autor
  • Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Nadbystrzycka 38A, 20-618 Lublin, Poland
Bibliografia
  • [1] Wood, A.J., Wollenberg, W.F., Shelbe, G.B. (2014). Power Generation, Operation and Control. John Wiley and Sons, Inc., 403.
  • [2] Grigsby, L. (2013). The Electric Power Engineering Handbook: Power Systems. CRC Press Taylor & Francis Group, 5−25.
  • [3] Enloe, C.L., Garnett, E., Miles, J., Swanson, S. (2001). Physical Science: What the Technology Professional Needs to Know. Wiley, 47.
  • [4] Borkowski, J., Kania, D., Mroczka, J. (2014). Interpolated-DFT-Based Fast and Accurate Frequency Estimation for the Control of Power. IEEE Transactions on Industrial Electronics, 61(12).
  • [5] Ramachandran, P., Vittal, V., Heydt, G.T. (2008). Mechanical State Estimation for Overhead Transmission Lines With Level Spans. IEEE Transactions on Power Systems, 23(3).
  • [6] Malhara, S., Vittal, V. (2010). Mechanical State Estimation of Overhead Transmission Lines Using Tilt Sensors. IEEE Transactions on Power Systems, 25(3).
  • [7] Abur, A., Gomez, Exposito, A. (2004). Power Systems State Estimation Theory and Implementation. CRC Press Taylor & Francis Group, 157.
  • [8] Kremens, Z., Sobierajski, Z. (1996). Power System Analysis. WNT, 145-146.
  • [9] Schweppe, F.C., Wildes, J. (1970). Power System Static-State Estimation, Part I: Exact Model. IEEE Transactions on Power Apparatus and Systems, PAS−89, 120−125.
  • [10] Schweppe, F.C., Rom, D.B. (1970). Power System Static-State Estimation, Part II: Approximate Model. IEEE Transactions on Power Apparatus and Systems, PAS−89, 125−130.
  • [11] Schweppe, F.C. (1970). Power System Static-State Estimation, Part III: Implementation. IEEE Transactions on Power Apparatus and Systems, PAS−89, 130−135.
  • [12] Żmuda, K. (2014). Electric power transmission and distribution systems − selected topics with examples. WPS, 9−12, 38-39, 49.
  • [13] Crow, M.L. (2010). Computational Methods for Electric Power Systems. CRC Press.
  • [14] Zarco, P., Gomez, A. (2000). Power System Parameter Estimation: A Survey. IEEE Transactions on Power Systems, 15(1), 216−222.
  • [15] Zarco, P., Gomez, A. (1996). Off-line Determination of Network Parameters in State Estimation. Proc. 12th Power System Computation Conference, 1207−1213.
  • [16] Quintana, V., Van Cutsem, T. (1989). Power System Network Parameter Estimation. Optimal Control Applications and Methods, 9, 303−323.
  • [17] Reig, A., Alvarez, C. (1989). Influence of Network Parameter Errors in State Estimation Results. Proc. IASTED Power High Tech., Spain 89, 199−204.
  • [18] Slutsker, I., Mokhtari, S. (1995). Comprehensive Estimation in Power Systems. Power Systems: State, Topology and Parameter Estimation, American Power Conference, Paper 170, Chicago IL USA.
  • [19] Slutsker, I., Clements, K. (1996). Real Time Recursive Parameter Estimation in Energy Management Systems. IEEE Transactions on Power Systems, 11(3), 1393−1399.
  • [20] Hopitzan, H. (2015). EMO - Easy Monitoring Overhead Transmission Lines. Information materials. MICCA Informationstechnologie GmbH.
  • [21] Żurowski, J. (2010). Dynamic line rating as a tool for operating network with increased line ampacity. Electrical News, 7, 27−31.
  • [22] Fish, L., Pawlowicz, W. (2011). Power DonutTM Systems for Electric Power Line Monitoring. Proc. USI Real Time Answers/Integrated Solutions IBM, Warsaw, 1−8,11.
  • [23] Gal, S.A., Oltean, M.N., Fagarasan, T., Opincaru, M. (2011) On-line Monitoring of OHL Conductor Temperature; Live-Line Installation of the RITHERM System. Proc. ICOLIM 2011, Croatia, Zagreb.
  • [24] Baungarten Kersting, A.P., Nelson Hoffmann, J., Müller, M. (2006) Transmission Line Up-Rating Design Using Survey Data From Airborne LIDAR. Proc. CIGRE 2006, B2/D2-101, 1, 2, 3, 5−8.
  • [25] Boot, H.L.M., de Wild, F.H., van der Wey, A.H., Biedenbach, G. (2002). Overhead line local and distributed conductor temperature measurement techniques, models and experience at TZH. Proc. CIGRE 2002, Paper 22−205, 1−6.Standard IEEE 738−2012. IEEE Standard for Calculating the Current-Tempearature Relationship of Bare Overhead Conductors. IEEE Power and Energy Society, Approved Oct. 19, 2012.
  • [26] CIGRE Workig Group 22.12 (2002). Thermal Behaviour of Overhead Conductors.
  • [27] Morgan, V.T. (2003). Effects of Alternating and Direct Current, Power Frequency, Temperature, and Tension on the Electrical Parameters of ACSR Conductors. IEEE Transactions on Power Delivery, 18(3).
  • [28] Bockarjova, M., Andersson, G. (2007).Transmission Line Conductor Temperature Impact on State Estimation Accuracy. Proc. of Power Tech, IEEE Lausanne, 701-706.
  • [29] Cecchi, V., Miu, K., Leger, A.S., Nwankpa, C.O. (2011). Incorporating Temperature Variations Into Transmission-Line Models. IEEE Transactions on Power Delivery, 26(4).
  • [30] Zimmerman, R.D., Murillo-Sanchez, C.E., Thomas, R.J. (2011). Matpower: Steady-State Operations, Planning and Analysis Tools for Power Systems Research and Education. IEEE Transactions on Power Systems, 26(1).
Uwagi
EN
The presented paper is the result of research the Dynamic Management of Transmission Line Capacities with the Application of Innovative Measuring Techniques, financially supported by the National Centre for Research and Development and the National Fund for Environmental Protection within the framework of the GEKON program (Generator of Ecological Concepts) for the execution period from June 01, 2014 to May 31, 2016.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04ce1541-b2b1-469d-b9a6-8a41de700de8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.