PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implementation of factitious force method for control of 5R manipulator with skid-steering platform REX

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper implementation of the factitious force concept for a controlling complex mobile manipulator has been presented. As the nonholonomic constraint only lack of longitudinal slippage of wheels has been chosen - in skid-steering platforms lateral slippage is necessary to change orientation of such a platform. From a control theory point of view such a system is dynamically underactuated. As a solution to a underactuation problem a method of factitious force has been proposed. This method assumes extension on the dynamics level, in the form of an additional control inputs uv, which values are equal to zero equivalently. For a mobile manipulator, consisting of platform REX and 5R robotic onboard arm, a cascaded control law has been proposed. A simulation study was conducted for a mathematical model of a considered object with real values of physical parameters, i.e. lengths, masses, inertia moments etc. obtained from the 3D model. Results obtained in simulations have shown a proper action of the control system and convergence of tracking errors, occurring in a platform and in joints of a manipulator, to zero.
Rocznik
Strony
71--80
Opis fizyczny
Bibliogr. 16 poz., rys., wykr., tab.
Twórcy
autor
  • Chair of Cybernetics and Robotics, Faculty of Electronics, Wroclaw University of Science and Technology, 11/17 Janiszewskiego St., 50-372 Wroclaw, Poland
  • Chair of Cybernetics and Robotics, Faculty of Electronics, Wroclaw University of Science and Technology, 11/17 Janiszewskiego St., 50-372 Wroclaw, Poland
Bibliografia
  • [1] A. Mazur, “New approach to designing input-output decoupling controllers for mobile manipulators”, Bull. Pol. Ac.: Tech. 53 (1), 31-37 (2005).
  • [2] L. Caracciolo, A. De Luca, and S. Iannitti, “Trajectory tracking control of a four-wheel differentially driven mobile robot”, Proc. IEEE Int. Conf. on Robotics and Automation 4, 2632-2638 (1999).
  • [3] K. Kozłowski and D. Pazderski, “Modeling and control of a 4- wheel skid-steering mobile robot”, Int. J. Appl. Math. Comput. Sci. 14 (4), 477-496 (2004).
  • [4] A. Mazur and M. Cholewiński, “Robust control of differentially driven mobile platforms”, Proc. 8th Workshop Robot Motion and Control RoMoCo 2011 1, 53-64 (2011).
  • [5] D. Pazderski and K. Kozłowski, “Trajectory tracking of underactuated skid-steering robot”, Proc. American Control Conf. 4, 3506-3510 (2008).
  • [6] E. Mohammadpour, M. Naraghi, and M. Gudarzi, “Posture stabilization of skid steer wheeled mobile robots”, Proc. IEEE Int. Conf. on Robotics, Automation and Mechatronics 1, 163-169 (2010).
  • [7] E. Maalouf, M. Saad, and H. Saliah, “A higher level path tracking controller for a four-wheel differentially steered mobile robot”, Robotics and Autonomous Systems 1, 23-33 (2006).
  • [8] A. Mazur and M. Cholewiński, “Virtual force concept in steering mobile manipulators with skid-steering platform moving in unknown environment”, J. Intell. Robot. Syst. 77, 433-443 (2015).
  • [9] I. Motte and G. Campion, “A slow manifold approach for the control of mobile robots not satisfying the kinematic constraints”, IEEE Trans. Rob. Autom. 16 (6), 875-880 (2000).
  • [10] K. Tchoń, A. Mazur, I. Dule,ba, R. Hossa, and R. Muszyński, Manipulators and Mobile Robots: Models, Motion Planning, Control, PLJ Publisher, Warsaw, 2000, (in Polish).
  • [11] I. Dule,ba, Methods and Motion Planning Algorithms of Mobile and Manipulating Robots, Academic Printing House EXIT, Warsaw, 2001.
  • [12] C. Canudas de Wit, B. Siciliano, and G. Bastin, Theory of Robot Control, Springer, London, 1996.
  • [13] I. Dule,ba, “Modeling and control of mobile manipulators”, Proc. 6th IFAC Symp. Robot Control 2000 SYROCO’00 1, 687-692 (2000).
  • [14] M. Krstić, I. Kanellakopoulos, and P. Kokotović, Nonlinear and Adaptive Control Design, J. Wiley, New York, 1995.
  • [15] U. Libal and J. Płaskonka, “Noise sensitivity of selected kinematic path following controllers for a unicycle”, Bull. Pol. Ac.: Tech. 62 (1), 3-13 (2014).
  • [16] J.J. Slotine and W. Li, “Adaptive manipulator control: a case study”, IEEE Trans. Autom. Contr. 33 (11), 995-1003 (1988).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04cb7fa6-6e84-4b51-b290-a1fa77ba7b2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.