Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A numerical technique for one-dimensional Bratu’s problem is displayed in this work. The technique depends on Bernstein polynomial approximation. Numerical examples are exhibited to verify the efficiency and accuracy of the proposed technique. In this sequel, the obtained error was shown between the proposed technique, Chebyshev wavelets, and Legendre wavelets. The results display that this technique is accurate.
Wydawca
Czasopismo
Rocznik
Tom
Strony
336--346
Opis fizyczny
Bibliogr. 36 poz., tab., wykr.
Twórcy
autor
- Department of Mathematics, Kashmar Higher Education Institute, Kashmar, Iran
autor
- Department of Mathematics, University of Venda, P Bag X5050, Thohoyandou 0950, South Africa
Bibliografia
- [1] Caglara H., Caglarb N., Özer M., B-spline method for solving Bratu’s problem, Int. J. Comput. Math., 2010, 87(8), 1885-1891
- [2] Ascher U. M., Matheij R., Russell R. D., Numerical solution of boundary value problems for ordinary differential equations, SIAM, Philadelphia, 1995
- [3] Boyd J. P., Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation, Appl. Math. Comput., 2003, 14, 189-200
- [4] Buckmire R., Investigations of nonstandard Mickens-type finite-difference schemes for singular boundary value problems in cylindrical or spherical coordinates, Numer. Methods Partial Differ. Equ., 2003, 19(3), 380-398
- [5] Mounim A. S., de Dormale B. M., From the fitting techniques to accurate schemes for the Liouville-Bratu-Gelfand problem, Numer. Methods Partial Differ. Equ., 2006, 22(4), 761-775
- [6] Syam M. I., Hamdan A., An eflcient method for solving Bratu equations, Appl. Math. Comput., 2006, 176, 704-713
- [7] Li S., Liao S. J., Analytic approach to solve multiple solutions of a strongly nonlinear problem, Appl. Math. Comput., 2005, 169, 854-865
- [8] Wazwaz A. M., Adomian decomposition method for a reliable treatment of the Bratu-type equations, Appl. Math. Comput., 2005, 166, 652-663
- [9] Ali M. R., Hadhoud A. R., Hybrid orthonormal Bernstein and block-pulse functions wavelet scheme for solving the 2D Bratu problem, Results in Physics, 2019, 13, 12-21
- [10] Ali M. R., Hadhoud A. R., Srivastava H. M., Solution of fractional Volterra-Fredholm integro-differential equations under mixed boundary conditions by using the HOBW method, Adv. Difference Equ., 2019, Article number: 115
- [11] Ali M. R., Hadhoud A. R., Application of Haar wavelet method for solving the nonlinear fuzzy integro-differential equations, J. Comp. Theor. Nanos., 2019, 16(1), 1-18
- [12] Ali M. R., Mousa M. M., Ma W. X., Solution of nonlinear Volterra integral equations with weakly singular kernel by using the HOBW method, Adv. Math. Phys., 2019, Article ID 1705651
- [13] Alomari A. K., Syam M. I., Al-Jamal M. F., Bataineh A. S., Anakira N. R., Jameel A. F., Modified Legendre operational matrix of differentiation for solving strongly nonlinear dynamical systems, Int. J. Appl. Comput. Math., 2018, 4:117
- [14] Bataineh A. S., Bernstein polynomials method and it’s error analysis for solving nonlinear problems in the calculus of variations: convergence analysis via residual function, Filomat, 2018, 32(4), 1379-1393
- [15] Bataineh A. S., Application of adaptation HAM for nonlinear oscillator typified as a mass attached to a stretched elastic wire, Communications in Mathematics and Applications, 2017, 8(2), 157-165
- [16] Bataineh A. S., Al-Omari A. A., Isik O. R., Hashim I., Multistage Bernstein collocation method for solving strongly nonlinear damped systems, J. Vib. Control, 2018, 25(1), 122-131
- [17] Bataineh A. S., Hashim I., Isik O. R., Solution of fractional-order differential equations based on the operational matrices of new fractional Bernstein functions MHT Alshbool, Journal of King Saud University-Science, 2017, 29(1), 1-18
- [18] Bataineh A., Isik O., Aloushoush N., Shawagfeh N., Bernstein operational matrix with error analysis for solving high order delay differential equations, Int. J. Appl. Comput. Math., 2016, 3(3), 1749-1762
- [19] Bataineh A. S., Isik O. R., Hashim I., Bernstein method for the MHD flow and heat transfer of a second grade fluid in a channel with porous wall, Alexandria Engineering Journal, 2016, 55(3), 2149-2156
- [20] Ghomanjani F., Shateyi S., Numerical solution for fractional Bratu’s initial value problem, Open Physics, 2017, 15(1), 1045-1048
- [21] Bronson R., Costa G. B., Schaum’s Outline of Differential Equations, 3rd Edn., McGraw-Hill, New York, 2006
- [22] Boyd J. P., One-point pseudo spectral collocation for the one-dimensional Bratu equation, Appl. Math. Comput., 2011, 217(12), 5553-5565
- [23] Aksoy Y., Pakdemirli M., New perturbation iteration solutions for Bratu-type equations, Comput. Math. Appl., 2010, 59, 2802-2808
- [24] Jalilian R., Non-polynomial spline method for solving Bratu’s problem, Comput. Phys. Commun., 2010, 181, 1868-1872
- [25] Rashidinia J., Maleknejad K., Taheri N., Sinc-Galerkin method for numerical solution of the Bratu’s problem, Numer. Algorithms, 2013, 62, 1-11
- [26] Venkatesh S. G., Ayyaswamy S. K., Raja Balachandar S., The Legendre wavelet method for solving initial value problems of Bratu-type, Comput. Math. Appl., 2012, 63(8), 1287-1295
- [27] Harada K., Nakamae E., Application of the Bezier curve to data interpolation, Computer-Aided Design, Int. J. Comput. Math., 1982, 14(1), 55-59
- [28] Nürnberger G., Zeilfelder F., Developments in bivariate spline interpolation, J. Comput. Appl. Math., 2000, 121(1-2), 125-152
- [29] Zheng J., Sederberg T. W., Johnson R. W., Least squares methods for solving differential equations using Bezier control points, Appl. Numer. Math., 2004, 48, 237-252
- [30] Ghomanjani F., Farahi M. H., The Bezier control points method for solving delay differential equation, Intelligent Control and Automation, 2012, 3(2), 188-196
- [31] Ghomanjani F., Farahi M. H., Gachpazan M., Bezier control points method to solve constrained quadratic optimal control of time varying linear systems, Comput. Appl. Math., 2012, 31(3), 433-456
- [32] Ghomanjani F., Farahi M. H., Optimal control of switched systems based on Bezier control points, Int. J. Intell. Syst. Appl., 2012, 4(7), 16-22
- [33] Ghomanjani F., Farahi M. H., Kamyad A. V., Numerical solution of some linear optimal control systems with pantograph delays, IMA J. Math. Control Inform., 2015, 32(2), 225-243
- [34] Xie L. J., Zhou C. L., Xu S., An effective numerical method to solve a class of nonlinear singular boundary value problems using improved differential transform method, Springerplus, 2016, 5:1066
- [35] Yang C., Hou J., Chebyshev wavelets method for solving Bratu’s problem, Bound. Value Probl., 2013, 2013:142
- [36] Zarebnia M., Sarvari Z., New approach for numerical solution of the one-dimensional Bratu equation, Thai J. Math., 2013, 11(3), 611–621
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04c641db-c184-4ba5-a4ac-3d0034c060c0