PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Literature Books Recommender System using Collaborative Filtering and Multi-Source Reviews

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (19 ; 08-11.09.2024 ; Belgrade, Serbia)
Języki publikacji
EN
Abstrakty
EN
In this contribution, we present a method for obtaining literature books recommendations using collaborative filtering recommender system technique and emotions extracted from multi-source online reviews. We experimentally validated the proposed system using a book dataset and associated reviews that we collected from Goodreads and Amazon websites using our customized web scrapers. We show the benefits of using multi-source reviews by proposing a series of recommender system evaluation measures, which include single-source and multi-source recommendations similarity, recommendation algorithm usecases coverage and generated recommendations relevance.
Rocznik
Tom
Strony
225–--230
Opis fizyczny
Bibliogr. 11 poz., tab., wykr., wz.
Twórcy
  • Department of Computers and Information ,Technology University of Craiova, 200585, Craiova, Romania
  • Department of Computers and Information ,Technology University of Craiova, 200585, Craiova, Romania
Bibliografia
  • 1. M. R. Bouadjenek, E. Pacitti, M. Servajean, F. Masseglia, and A. E. Abbadi. A distributed collaborative filtering algorithm using multiple data sources. In The Tenth International Conference on Advances in Databases, Knowledge, and Data Applications, 2018.
  • 2. E. Hasan, M. Rahman, C. Ding, J. X. Huang, and S. Raza. Review-based recommender systems: A survey of approaches, challenges and future perspectives. Computer Science, 2405.05562, 2024.
  • 3. H. Liu, Q. Cao, X. Huang, F. Liu, C. Zhang, and J. An. Multi-source information contrastive learning collaborative augmented conversational recommender systems. Complex and Intelligent Systems, 2024.
  • 4. E.-R. Luţan and C. Bădică. Emotion-based literature book classification using online reviews. Electronics, 11(3412), 2022.
  • 5. E.-R. Luţan and C. Bădică. Emotion-based literature books recommender systems. In Proceedings of the 18th Conference on Computer Science and Intelligence Systems, volume 35, pages 275–280, 2023.
  • 6. E.-R. Luţan and C. Bădică. Experimenting emotion-based book recommender systems with social data. In Information Technology for Management: Solving Social and Business Problems Through IT, pages 164–182, 2024.
  • 7. D. Roy and C. Ding. Multi-source based movie recommendation with ratings and the side information. Social Network Analysis and Mining, 11(76), 2021.
  • 8. D. Roy and F. Shirazi. A review on multiple data source based recommendation systems. In 2021 International Conference on Computational Science and Computational Intelligence (CSCI), pages 1534–1539, 2021.
  • 9. I. Schoinas and C. Tjortjis. Musif: A product recommendation system based on multisource implicit feedback. 15th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), pages 660–672, 2019.
  • 10. A. Speciale, G. Vallero, L. Vassio, and M. Mellia. Recommendation systems in libraries: an application with heterogeneous data sources. In 7th International workshop on Data Analytics solutions for Real-LIfe Applications, 2023.
  • 11. H. Toumy. Perfume project. 2019. https://hayatoumy.github.io/recommender_system/ [Accessed: (May 10, 2024)].
Uwagi
1. Main Track: Short Papers
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04c47c5a-7a57-452a-bdc5-b64a1a089102
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.