PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selective depression of Escherichia coli on flotation of collophanite and dolomite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The phosphate rock flotatio n test was carried out using Escherichia coli E. coli ) as a depressant of dolomite. The results showed that E. coli had a great selective depression on dolomite during flotation. With E. coli as a depressant of dolomite, a useful beneficiation index of phosphorus concentrate with P2O5 grade of more than 30% and MgO content less than 1.2% can be obtained by closed circuit of one stage roughing and one stage cleaning. Furthermore, the depression mechanism of E. coli was studied by ad sorption experiments, infrared spectrum, and zeta potential. This study shows that the adsorption ability of E. coli onto dolomite is stronger than that of collophanite. When the pH is greater than 6, E. coli are chemically adsorbed on the surface of the c ollophanite and dolomite,which also increases the negative charge on the surface of the two minerals. The selective adsorption of E. coli cells to dolomite was best when the pH value is about 7.8.
Słowa kluczowe
Rocznik
Strony
art. no. 150604
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
autor
  • College of Mining, Guizhou University, Guiyang, 550025, China
autor
  • College of Mining, Guizhou University, Guiyang, 550025, China
autor
  • Department of Road and Bridge Engineering, Guizhou Jiaotong College, Ganzhou Guiyang, 550025, China
autor
  • College of Mining, Guizhou University, Guiyang, 550025, China
autor
  • College of Mining, Guizhou University, Guiyang, 550025, China
Bibliografia
  • BLEEZE, B., ZHAO, J., SARAH, L, H., 2018. Selective Attachment of Leptospirillum ferrooxidans for Separation of Chalcopyrite and Pyrite through Bio-Flotation. Minerals, 8(3), 86.
  • CARLOS, A, C, O., ANTOÑIO, G, M., JHONATAN, G, S, P., MAURÍCIO, L, T., 2016. On the fundamentals aspects of hematite bioflotation using a Gram positive strain. Minerals Engineering, 106, 55-63.
  • CI, Y, X., ZANG, K, S., GAO, T, Y., 2002. Infrared spectroscopy of several microorganisms. Journal of chemistry of colleges and universities, (06), 1047-1049.
  • DOS SANTOS, M, A., SANTANA, R, C., CAPPONI, F., ATAÍDE, C, H., BARROZO, M, A, S., 2010. Effect of ionic species on the performance of apatite flotation. Separation and Purification Technology, 76(1), 15-20.
  • GHOSH, S., MOHANTY, S., AKCIL, A., SUKLA, L, B., DAS, A, P., 2016. A greener approach for resource recycling: Manganese bioleaching. Chemosphere, 154, 628-639.
  • KUANG, J, Z., CAO, H, Y., XIAO, K, M., ZENG, J, L., 2013. Study on flotation separation mechanism of collophanite and dolomite. Chemical minerals and processing, 42(02), 1-4.
  • LI, H, C., DE, B, P, L., 1966. Electrokinetic and adsorption studies on quartz. Surface Science, 5(2),203-220.
  • LI, N., FU, L., WANG, T., LIU, L, F., 2019. Research on single reverse flotation process of Silicate colloapatite and its industrial application. Nonferrous Metals (Mineral Processing Section), (05), 90-94.
  • LIU, Y, Q., GAO, L., YU, L., GUO, J, K., 2000. Adsorption of PBTCA on Alumina Surfaces and Its Influence on the Fractal Characteristics of Sediments. Journal of Colloid And Interface Science, 227(1), 164-170.
  • LUO, G, J., NIE, G, H., 2016. Selective adsorption on the surface of the Escherichia coli in apatite and dolomite. Journal of Inner Mongolia coal economy, (21), 140-141.
  • LUQUE-ALMAGRO, V, M., CABELLO, P., SAEZ, L, P., OLAYA-ABRIL, A., MORENO-VIVIAN, C., ROLDAN, M, D., 2018. Exploring anaerobic environments for cyanide and cyano-derivatives microbial degradation. Applied microbiology and biotechnology, 102(3), 1067-1074.
  • MOHAMMADKANI, M., NOPARAST, M., SHAFAE, S, Z., 2011. Double reverse flotation of a very low-grade sedimentary phosphate rock rich in carbonate and silicate. International Journal of Mineral Processing, 100(3–4), 157–165.
  • MESQUITA, L, M, S., LINS, F, F., TORERO, M, L., 2003. Interaction of a hydrophobic bacterium strain in a hematite quartz flotation system. International Journal Of Mineral Processing, 71(1-4), 31-44.
  • NATARAJAN, K, A., DEO, N., 2001. Role of bacterial interaction and bio-reagents in Iron ore flotation. International Journal of Mineral Processing, 62(1-4), 143-157.
  • NIE, G, H., 2016. Study on selective inhibition and mechanism of fluorine-bearing minerals and calcium-bearing carbonate minerals. University of Science and Technology Beijing.
  • NIE, M., LUO, J, L., BAO, K., ZHANG, W, Q., YANG, S, P., LI, P., 2007. Identification of Fusarium by Fourier transform infrared spectroscopy. Spectroscopy and spectral analysis, (08), 1519-1522.
  • PATRA, P., NATARAJAN, K, A., 2003. Microbially induced flocculation and flotation for separation of chalcopyrite from quartz and calcite. International Journal of Mineral Processing, 74(1), 143-155.
  • RABIA, H., OULD, H, M., KASPERKIEWICZ, K., BROZEK, J., AUGUSTYNIAK, M., 2019. Adhesion abilities and biosorption of Cd and Mg by microorganisms - first step for eco-friendly beneficiation of phosphate ore. Scientific reports, 9(1), 12929.
  • SANTHIYA, D., SUBRAMANIAN, S., NATARAJAN, K, A., HANUMANTHA, R, K., FORSSBERG, K, S, E., 2001. Bio-modulation of galena and sphalerite surfaces using Thiobacillus thiooxidans. International Journal of Mineral Processing, 62(1), 121-141.
  • SARVAMANGALA, H., NATARAJAN, K, A., 2011. Microbially induced flotation of alumina, silica/calcite from haematite. International Journal of Mineral Processing, 99(1), 70-77.
  • TIAN, J., XU, L, H., DENG, W., JIANG, H., GAO, Z, Y., HU, Y, H., 2017. Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system. Chemical Engineering Science, 164, 99-107.
  • TONG, W, S., ZHANG, Y, H., ZHEN, Z, C., YU, L., AN, Q., ZHANG, Z L., LV, F, Z., PAUL, K, C., 2013. Effects of surface properties of red mud on interactions with Escherichia coli. Journal of Materials Research, 28(17), 2332-2338.
  • WANG, L, Y., LI, X, L., CHEN, J, J., ZHAO, N., 2016. Research progress of microbial beneficiation agents. China mining, 25 (12), 112-116 + 127.
  • WANG, L, X., XU, S., LI, J., 2011. Effects of phosphate on the transport of Escherichia coli O157:H7 in saturated quartz sand. Environmental science & technology, 45(22), 9566-73.
  • WANG, Y, D., 2017. Preliminary study on microbiome methodology based on synchrotron radiation infrared spectroscopy. Graduate School of Chinese Academy of Sciences (Shanghai Institute of Applied Physics)
  • WANG, Y, G., ZENG, W, M., QIU, G, Z., CHEN, X, H., ZHOU, H, B., 2014. A moderately thermophilic mixed microbial culture for bioleaching of chalcopyrite concentrate at high pulp density. Applied and environmental microbiology, 80(2), 741-50.
  • WANG, Y, LEE, S, M., GENTLE, I, R., DYKES, G, A., 2020. A statistical approach for modelling the physical process of bacterial attachment to abiotic surfaces. Biofouling, 36(10).1227-1242.
  • WU, F, F., WANG, J, X., LIU, J, T., ZENG, G, P., XIANG, P., HU, P., XIANG, W, S., 2021. Distribution, geology and development status of phosphate resources. Geology in China, 48(1), 82-101.
  • XIAO, G, S., AI, G, H., WANG, Y, T., 2021. Research progress and direction of microorganisms in mineral flotation. Nonferrous metals (beneficiation), (04), 26-31 + 38.
  • ZHEN, F, S., SHA, H, Y., LIU, C, M., FENG, A, S., 2018. Research status of Beneficiation process of phosphate ore in China. Metal Mine, (02), 7-13.
  • ZHANG, H., LIU, W, G., HAN, C., HAO, H, Q., 2018. Effects of monohydric alcohols on the flotation of magnesite and dolomite by sodium oleate. Journal of Molecular Liquids, 249.
  • ZHENG, X, P., 1998. Flotation separation of phosphate from dolomite using bacteria as depressants. University of Nevada, Reno.
  • ZHENG, X, P., SMITH, R, W., METTE, R, K., LUO, X, P., 1999. Separation of apatite and bacteria modified dolomite by flotation with anionic collector. Foreign Beneficiation Letters, (08), 8-12.
  • ZHOU, F., WANG, L, X., XU, Z, H., RUAN, Y, Y., ZHANG, Z, Y., CHI, R., 2017. Role of reactive oily bubble in apatite flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 513.
  • Z•X, P., 2001. Adhesion of two kinds of bacteria on dolomite and apatite: Their effects on anionic flotation inhibition of dolomite. Mineral Processing of Metal Ore abroad, (11), 33-37.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04c2cd36-ae19-4433-a8eb-bc73fb7fcf60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.