PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Upwelling dynamics in the Baltic Sea studied by a combined SAR/infrared satellite data and circulation model analysis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Data from the space-borne synthetic aperture radar (SAR) aboard the Envisat satellite and MODIS spectroradiometers on board the Terra/Aqua satellites, and the high resolution Sea Ice-Ocean Model of the Baltic Sea (BSIOM) have been used to investigate two upwelling events in the SE Baltic Sea. The combined analysis was applied to the upwelling events in July 2006 along the coasts of the Baltic States, and in June 2008 along the Polish coast and Hel Peninsula. Comparisons indicated good agreement between the sea surface temperatures and roughness signatures detected in satellite imagery and model results. It is shown that BSIOM can simulate upwelling events realistically. The utilization of modelled hydrodynamics and wind stress data together with SAR and SST information provides an extended analysis and deeper understanding of the upwelling processes in the Baltic Sea. During the active phase of upwelling when the wind is strong, the resulting coastal jet is controlled by vorticity dynamics related to depth variations in the direction of the flow. Typical upwelling patterns are related to the meandering coastal jet and thus associated with topographic features. The longshore transport of the coastal jet is of the order of 104 m3 s-1, and the offshore transport at the surface is of the order of 103 m3 s-1,, which respectively correspond to the total and largest river runoff to the Baltic Sea.
Czasopismo
Rocznik
Strony
687--707
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
autor
  • Atlantic Branch of the P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS), Pr. Mira 1, 236000 Kaliningrad, Russia
autor
  • GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
autor
  • P. P. Shirshov Institute of Oceanology Moscow, Russia
Bibliografia
  • 1. Brown O. B., Minnett P. J., 1999, MODIS infrared sea surface temperature algorithm theoretical basis document, Ver. 2.0, http://modis.gsfc.nasa.gov/data/atbd/atbd_mod25.pdf.
  • 2. Bumke K., Karger U., Hasse L., Niekamp K., 1998, Evaporation over the Baltic Sea as an example of a semi-enclosed sea, Contr. Atmos. Phys., 71 (2), 249-261.
  • 3. Bychkova I., Viktorov S., Shumakher D., 1988, A relationship between the large- scale atmospheric circulation and the origin of coastal upwelling in the Baltic, Metorol. Gidrol., 10, 91-98, (in Russian).
  • 4. Clemente-Colón P., Yan X. H., 1999, Observations of east coast upwelling conditions in synthetic aperture radar imagery, IEEE T. Geosci. Remote, 37 (5), 2239-2248, http://dx.doi.org/10.1109/36.789620.
  • 5. Clemente-Colón P., Yan X.-H., 2000, Low backscatter features in SAR imagery, JHU APL Tech. Digest, 21 (1), 116-121.
  • 6. Csanady G. T., 1982, Circulation in the coastal ocean, D. Reidel Publ. Company, Dordrecht, 279 pp., http://dx.doi.org/10.1007/978-94-017-1041-1.
  • 7. Fennel W., Seifert T., 1995, Kelvin wave controlled upwelling in the western Baltic, J. Marine Syst., 6 (4), 289-300, http://dx.doi.org/10.1016/0924-7963(94)00038-D.
  • 8. Fennel W., Sturm M., 1992, Dynamics of the western Baltic, J. Marine Syst., 3 (1-2), 183-205, http://dx.doi.org/10.1016/0924-7963(92)90038-A.
  • 9. Gelimbauskaite L.-Z. (ed.), 1998, Bathymetric map of the Central Baltic Sea, scale 1:500 000, LGT Ser. Marine Geol. Maps, No. 1 / SGU Ser. Ba No. 54., Geol. Survey Sweden, Lith. Inst. Geol., Vilnius/Uppsala.
  • 10. Gurova E. S., Ivanov A. Yu., 2011, Appearance of sea surface signatures and current features in the South-East Baltic Sea on the MODIS and SAR images, Issled. Zemli Kosm., 4, 41-54, (in Russian).
  • 11. Hsu M. K., Mitnik L. M., Liu C. T., 1995, Upwelling area northeast of Taiwan on ERS-1 SAR images, Acta Oceanogr. Taiwan., 34 (3), 27-38.
  • 12. Kowalewski M., Ostrowski M., 2005, Coastal up- and downwelling in the southern Baltic, Oceanologia, 47 (4), 454-475.
  • 13. Kozlov I. E., Kudryavtsev V. N., Johannessen J. A., Chapron B., Dailidiene I., Myasoedov A. G., 2011, ASAR imaging for coastal upwelling in the Baltic Sea, Adv. Space Res., 50 (8), 1125-1137, http://dx.doi.org/10.1016/j.asr.2011.08.017.
  • 14. Krauss W., Brúgge B., 1991, Wind produced water exchange between the deep basins of the Baltic Sea, J. Phys. Oceanogr., 21, 373-384, http://dx.doi.org/10.1175/1520-0485(1991)021<0373:WPWEBT>2.0.CO;2.
  • 15. Kronsell J., Andersson P., 2012, Total regional runoff to the Baltic Sea, HELCOM Indicator Fact Sheets 2011.
  • 16. Laanemets J., Váli G., Zhurbas V., Elken J., Lips I., Lips U., 2011, Simulation of mesoscale structures and nutrient transport during summer upwelling events in the Gulf of Finland in 2006, Boreal Environ. Res., 16 (Suppl. A), 15-26.
  • 17. Large W. G., Pond S., 1981, Open ocean flux measurements in moderate to strong winds, J. Phys. Oceanogr., 11, 324-336, http://dx.doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.
  • 18. Lehmann A., 1995, A three-dimensional baroclinic eddy-resolving model of the Baltic Sea, Tellus A, 47 (5), 1013-1031, http://dx.doi.org/10.1034/j.1600-0870.1995.00206.x.
  • 19. Lehmann A., Hinrichsen H.-H., 2000, On the thermohaline variability of the Baltic Sea, J. Marine Syst., 25, 333-357, http://dx.doi.org/10.1016/S0924-7963(00)00026-9.
  • 20. Lehmann A., Krauss W., Hinrichsen H.-H., 2002, Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea, Tellus A, 54 (3), 299-316.
  • 21. Lehmann A., Myrberg K., 2008, Upwelling in the Baltic Sea - A review, J. Marine Syst., 74 (Suppl.), S3-S12, http://dx.doi.org/10.1016/j.jmarsys.2008.02.010.
  • 22. Lehmann A., Myrberg K., Höflich K., 2012, A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990-2009, Oceanologia, 54 (3), 369-393, http://dx.doi.org/10.5697/oc.54-3.369.
  • 23. Li X. M., Li X. F., He M. X., 2009, Coastal upwelling observed by multi-satellite sensors, Science in China, Sci. China Ser. D, 52 (7), 1030-1038, http://dx.doi.org/10.1007/s11430-009-0088-x.
  • 24. Lin I.-I., Wen L.-S., Liu K.-K., Tsai W.-T., Liu A.-K., 2002, Evidence and quantiffcation of the correlation between radar backscatter and ocean colour supported by simultaneously acquired in situ sea truth, Geophys. Res. Lett., 29 (10), http://dx.doi.org/10.1029/2001GL014039.
  • 25. Mitnik L. M., Lobanov V. B., 1991, Reflection of the oceanic fronts on the satellite radar images, [in:] Oceanography of Asian marginal seas, K. Takano (ed.), Elsevier Oceanogr. Ser., 54, Elsevier, Amsterdam, 85-101.
  • 26. Myrberg K., Andrejev O., Lehmann A., 2010, Dynamics of successive upwelling events in the Baltic Sea - a numerical case study, Oceanologia, 52 (1), 77-99.
  • 27. Novotny K., Liebsch G., Lehmann A., Dietrich R., 2006, Variability of sea surface heights in the Baltic Sea: An intercomparison of observations and model simulations, Mar. Geod., 29 (2), 113-134, http://dx.doi.org/10.1080/01490410600738054.
  • 28. Ruddick K. G., Ovidio F., Rijkeboer M., 2000, Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters, Appl. Optics, 39 (6), 897-912.
  • 29. Rudolph C., Lehmann A., 2006, A model-measurements comparison of atmospheric forcing and surface fluxes of the Baltic Sea, Oceanologia, 48 (3), 333-380.
  • 30. Smith S. D., 1988, Coeffcients for the sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature, J. Geophys. Res., 93 (C12), 15467-15472, http://dx.doi.org/10.1029/JC093iC12p15467.
  • 31. Stoffelen A., Anderson D., 1997, Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4, J. Geophys. Res., 102 (C3), 5767-5780, http://dx.doi.org/10.1029/96JC02860.
  • 32. Valenzuela G. R., 1978, Theories for the interaction of electromagnetic and oceanic waves: A review, Bound.-Lay. Meteorol., 13, 61-85.
  • 33. Zhurbas V. M., Stipa T., Mälkki P., Paka V. T., Kuz’mina N. P., Sklyarov E. V., 2004, Mesoscale variability of the upwelling in the southeastern Baltic Sea: IR images and numerical modeling, Oceanology, 44 (5), 619-628.
  • 34. Zhurbas V., Lannemets J., Vahtera E., 2008, Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input to the upper mixed layer in the Gulf of Finland, Baltic Sea, J. Geophys. Res., 113, C05004, http://dx.doi.org/10.1029/2007JC004280.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04c00149-4451-4830-8c76-7fec4da59600
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.