PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Adsorption of selected GHG on metal-organic frameworks in the context of accompanying thermal effects

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Adsorpcja wybranych gazów cieplarnianych na związkach metaloorganicznych MOF w kontekście towarzyszących jej efektów cieplnych
Języki publikacji
EN
Abstrakty
EN
Thermal effects accompanying gas sorption on micro- and mesoporous materials provide unique insights into the type, course, and efficiency of sorption. In this study, metal-organic frameworks (MOFs) with different topologies and chemical structures were synthesized and investigated: HKUST-1, Ni-MOF-74, UiO-66, and MIL-140A. These MOFs were characterized structurally and sorptively with respect to selected greenhouse gases (GHGs). Sorption capacities for CO2 and CH4 were determined at several temperatures and measurement pressures, and the maximum sorption capacity was determined using the Langmuir-Freundlich model. Thermal effects accompanying adsorption were quantified through the isosteric heat of adsorption parameter. For each MOF, the values of isosteric heat of adsorption were higher for CO2 than for CH4. The values of this parameter was determined in the following order: HKUST-1 > Ni-MOF-74 > UiO-66 > MIL-140A. Energy homogeneity of the adsorbent surface was observed in nearly all cases, except for UiO-66 during CO2 adsorption. Changes in the determined isosteric heat of adsorption of CO2 with increasing sorption capacity were in the range of 5-15 kJ/mol, while for CH4 they ranged from 1.4 to 17 kJ/mol, respectively. The level of thermal selectivity of CO2 over CH4 was determined in the following order: UiO-66 (1.9) > Ni-MOF-64 (1.7) > MIL-140A (1.5) > HKUST-1 (1.1).
PL
Efekty termiczne towarzyszące sorpcji gazu na materiałach mikro- i mezoporowatych dostarczają unikalnych spostrzeżeń na temat rodzaju, przebiegu i efektywności sorpcji. W niniejszym artykule zsyntetyzowano i zbadano związki metaloorganiczne (MOF) o skrajnie różnej topografii i budowie chemicznej: HKUST-1, Ni-MOF-74, UiO-66 i MIL-140A. MOFy te scharakteryzowano strukturalnie i sorpcyjnie względem wybranych GHG. Określono pojemności sorpcyjne względem CO2 i CH4 w kilku temperaturach i ciśnieniach pomiaru oraz określono maksymalną pojemność sorpcyjną zgodnie z modelem Langmuira-Freundlicha. Wyznaczono efekty cieplne towarzyszące adsorpcji poprzez parametr izosterycznego ciepła sorpcji. Dla każdego z MOFów wartości izosterycznego ciepła adsorpcji były wyższe względem CO2, niż względem CH4. Wartości tego parametru określono w następującej kolejności: HKUST-1 > Ni-MOF-74 > UiO-66 > MIL-140A. W prawie każdym przypadku zaobserwowano jednorodność energetyczną powierzchni adsorbentu, poza UiO-66 podczas adsorpcji CO2. Zmiany wyznaczonego izosterycznego ciepła sorpcji CO2 wraz ze wzrostem pojemności sorpcyjnej były w zakresie 5-15 kJ/mol, natomiast względem CH4 wyniosły odpowiednio 1.4-17 kJ/mol. Określono poziom selektywności cieplnej CO2 względem CH4. Najwyższą selektywność posiadały UiO-66 (1.9) oraz Ni-MOF-74 (1.7), natomiast najniższą MIL-140A (1.5) i HKUST-1 (1.1).
Rocznik
Strony
51--63
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
  • Strata Mechanics Research Institute of the Polish Academy of Sciences, Kraków, Poland
  • Faculty of Chemical Engineering and Technology, Cracow University of Technology, Kraków, Poland
  • Strata Mechanics Research Institute of the Polish Academy of Sciences, Kraków, Poland
  • Faculty of Chemical Engineering and Technology, Cracow University of Technology, Kraków, Poland
  • Faculty of Chemical Engineering and Technology, Cracow University of Technology, Kraków, Poland
  • AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, Kraków, Poland
autor
  • AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, Kraków, Poland
Bibliografia
  • 1. Abdelnaby, M. M., Tayeb, I. M., Alloush, A. M., Alyosef, H. A., Alnoaimi, A., Zeama, M., Mohammed, M. G. & Onaizi, S. A. (2024). Post-synthetic modification of UiO-66 analogue metal-organic framework as potential solid sorbent for direct air capture, Journal of CO2 Utilization, 79, 102647. DOI:10.1016/j.jcou.2023.102647.
  • 2. Aniruddha, R., Sreedhar, I. & Reddy, B. M. (2020). MOFs in carbon capture-past, present and future, Journal of CO2 Utilization, 42, 101297. DOI:10.1016/j.jcou.2020.101297.
  • 3. Barrett, E. P., Joyner, L. G. & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, 73, pp. 373-380. DOI:10.1021/ja01145a126.
  • 4. Becker, T. M., Heinen, J., Dubbeldam, D., Lin, L.-C. & Vlugt, T. J. H. (2017). Polarizable Force Fields for CO 2 and CH 4 Adsorption in M-MOF-74, The Journal of Physical Chemistry C, 121, pp. 4659-4673. DOI:10.1021/acs.jpcc.6b12052.
  • 5. Bisotti, F., Hoff, K. A., Mathisen, A. & Hovland, J. (2024). Direct Air capture (DAC) deployment: A review of the industrial deployment, Chemical Engineering Science, 283, 119416. DOI:10.1016/j.ces.2023.119416.
  • 6. Bordiga, S., Regli, L., Bonino, F., Groppo, E., Lamberti, C., Xiao, B., Wheatley, P. S., Morris, R. E. & Zecchina, A. (2007). Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR, Physical Chemistry Chemical Physics, 9, 2676. DOI:10.1039/b703643d.
  • 7. Brunauer, S., Emmett, P. H. & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, 60, pp. 309-319. DOI:10.1021/ja01269a023.
  • 8. Canivet, J., Fateeva, A., Guo, Y., Coasne, B. & Farrusseng, D. (2014). Water adsorption in MOFs: fundamentals and applications, Chem. Soc. Rev., 43, pp. 5594-5617. DOI:10.1039/C4CS00078A.
  • 9. Carreon, M. A. & Venna, S. R. (2020). Metal-Organic Framework Membranes for Molecular Gas Separations, World Scientific (Europe), 6. DOI:10.1142/q0200.
  • 10. Chai, W., Shen, Y., Wang, J. & Zhang, G. (2022). Applications of Metal-Organic Framework Materials, Journal of Physics: Conference Series, 2194, 012014. DOI:10.1088/1742-6596/2194/1/012014.
  • 11. Chakraborty, A., Saha, B. B., Ng, K. C., Koyama, S. & Srinivasan, K. (2009). Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces, Langmuir, 25, pp. 2204-2211. DOI:10.1021/la803289p.
  • 12. Choi, I., Jung, Y. E., Yoo, S. J., Kim, J. Y., Kim, H.-J., Lee, C. Y. & Jang, J. H. (2017). Facile Synthesis of M-MOF-74 (M=Co, Ni, Zn) and its Application as an ElectroCatalyst for Electrochemical CO2 Conversion and H2 Production, Journal of Electrochemical Science and Technology, 8, pp. 61-68. DOI:10.33961/JECST.2017.8.1.61.
  • 13. Chowdhury, P., Mekala, S., Dreisbach, F. & Gumma, S. (2012). Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity, Microporous and Mesoporous Materials, 152, pp. 246-252. DOI:10.1016/j.micromeso.2011.11.022.
  • 14. Cimino, R. T., Kowalczyk, P., Ravikovitch, P. I. & Neimark, A. V. (2017). Determination of Isosteric Heat of Adsorption by Quenched Solid Density Functional Theory, Langmuir, 33, pp. 1769-1779. DOI:10.1021/acs.langmuir.6b04119.
  • 15. Czaja, A. U., Trukhan, N. & Müller, U. (2009). Industrial applications of metal-organic frameworks, Chemical Society Reviews, 38, 1284. DOI:10.1039/b804680h.
  • 16. Czarnota, R., Knapik, E., Wojnarowski, P., Janiga, D. & Stopa, J. (2019). Carbon Dioxide Separation Technologies, Archives of Mining Sciences, 64, pp. 487-498. DOI:10.24425/ams.2019.129364.
  • 17. Dhakshinamoorthy, A., Li, Z. & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks, Chemical Society Reviews, 47, pp. 8134-8172. DOI:10.1039/C8CS00256H.
  • 18. Ding, M., Cai, X. & Jiang, H.-L. (2019). Improving MOF stability: approaches and applications, Chemical Science, 10, pp. 10209-10230. DOI:10.1039/C9SC03916C
  • 19. Elhenawy, S. E. M., Khraisheh, M., AlMomani, F. & Walker, G. (2020). Metal-Organic Frameworks as a Platform for CO2 Capture and Chemical Processes: Adsorption, Membrane Separation, Catalytic-Conversion, and Electrochemical Reduction of CO2, Catalysts, 10, 1293. DOI:10.3390/catal10111293.
  • 20. Erans, M., Sanz-Pérez, E. S., Hanak, D. P., Clulow, Z., Reiner, D. M. & Mutch, G. A. (2022). Direct air capture: process technology, techno-economic and socio-political challenges, Energy & Environmental Science, 15, pp. 1360-1405. DOI:10.1039/D1EE03523A.
  • 21. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks, Science, 341. DOI:10.1126/science.1230444.
  • 22. Gargiulo, N., Peluso, A. & Caputo, D. (2020). MOF-Based Adsorbents for Atmospheric Emission Control: A Review, Processes, 8, 613. DOI:10.3390/pr8050613.
  • 23. Giraldo, L., Rodriguez-Estupiñán, P. & Moreno-Piraján, J. C. (2019). Isosteric Heat: Comparative Study between Clausius-Clapeyron, CSK and Adsorption Calorimetry Methods, Processes, 7, 203. DOI:10.3390/pr7040203.
  • 24. Haldoupis, E., Borycz, J., Shi, H., Vogiatzis, K. D., Bai, P., Queen, W. L., Gagliardi, L. & Siepmann, J. I. (2015). Ab Initio Derived Force Fields for Predicting CO 2 Adsorption and Accessibility of Metal Sites in the Metal-Organic Frameworks M-MOF-74 (M = Mn, Co, Ni, Cu), The Journal of Physical Chemistry C, 119, pp. 16058-16071. DOI:10.1021/acs.jpcc.5b03700.
  • 25. Jodłowski, P. J., Kurowski, G., Dymek, K., Jędrzejczyk, R. J., Jeleń, P., Kuterasiński, Ł., Gancarczyk, A., Węgrzynowicz, A., Sawoszczuk, T. & Sitarz, M. (2020). In situ deposition of M(M=Zn; Ni; Co)-MOF-74 over structured carriers for cyclohexene oxidation - Spectroscopic and microscopic characterization, Microporous and Mesoporous Materials, 303, 110249. DOI:10.1016/j.micromeso.2020.110249.
  • 26. Jodłowski, P. J., Kurowski, G., Dymek, K., Oszajca, M., Piskorz, W., Hyjek, K., Wach, A., Pajdak, A., Mazur, M., Rainer, D. N., Wierzbicki, D., Jeleń, P. & Sitarz, M. (2023). From crystal phase mixture to pure metal-organic frameworks - Tuning pore and structure properties, Ultrasonics Sonochemistry, 95, 106377. DOI:10.1016/j.ultsonch.2023.106377.
  • 27. Jodłowski, P. J., Kurowski, G., Kuterasiński, Ł., Sitarz, M., Jeleń, P., Jaśkowska, J., Kołodziej, A., Pajdak, A., Majka, Z. & Boguszewska-Czubara, A. (2021). Cracking the Chloroquine Conundrum: The Application of Defective UiO-66 Metal-Organic Framework Materials to Prevent the Onset of Heart Defects—In Vivo and In Vitro, ACS Applied Materials & Interfaces, 13, pp. 312-323. DOI:10.1021/acsami.0c21508.
  • 28. Jodłowski, P. J., Kurowski, G., Skoczylas, N., Pajdak, A., Kudasik, M., Jędrzejczyk, R. J., Kuterasiński, Ł., Jeleń, P., Sitarz, M., Li, A. & Mazur, M. (2022). Silver and copper modified zeolite imidazole frameworks as sustainable methane storage systems, Journal of Cleaner Production, 352, 131638. DOI:10.1016/j.jclepro.2022.131638.
  • 29. Kong, X.-J. & Li, J.-R. (2021). An Overview of Metal-Organic Frameworks for Green Chemical Engineering, Engineering, 7, pp. 1115-1139. DOI:10.1016/j.eng.2021.07.001.
  • 30. Krzywanski, J., Grabowska, K., Sosnowski, M., Zylka, A., Kulakowska, A., Czakiert, T., Sztekler, K., Wesolowska, M. & Nowak, W. (2022). Heat Transfer in Adsorption Chillers with Fluidized Beds of Silica Gel, Zeolite, and Carbon Nanotubes, Heat Transfer Engineering, 43, 172-182. DOI:10.1080/01457632.2021.1874174.
  • 31. Kurzydym, I. & Czekaj, I. (2020). Modelling of porous metal-organic framework (MOF) materials used in catalysis, Technical Transactions, pp. 1-24. DOI:10.37705/TechTrans/e2020012.
  • 32. Langmuir, I. (1918). THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM, Journal of the American Chemical Society, 40, pp. 1361-1403. DOI:10.1021/ja02242a004.
  • 33. Lee, Y.-R., Kim, J. & Ahn, W.-S. (2013). Synthesis of metal-organic frameworks: A mini review, Korean Journal of Chemical Engineering, 30, pp. 1667-1680. DOI:10.1007/s11814-013-0140-6.
  • 34. Li, D., Chen, L., Liu, G., Yuan, Z., Li, B., Zhang, X. & Wei, J. (2021). Porous metal-organic frameworks for methane storage and capture: status and challenges, New Carbon Materials, 36, pp. 468-496. DOI:10.1016/S1872-5805(21)60034-3.
  • 35. Li, H., Li, L., Lin, R.-B., Zhou, W., Zhang, Z., Xiang, S. & Chen, B. (2019). Porous metal-organic frameworks for gas storage and separation: Status and challenges, EnergyChem, 1, 100006. DOI:10.1016/j.enchem.2019.100006.
  • 36. Li, M., Zhang, G., Boakye, A., Chai, H., Qu, L. & Zhang, X. (2021). Recent Advances in Metal-Organic Framework-Based Electrochemical Biosensing Applications, Frontiers in Bioengineering and Biotechnology, 9. DOI:10.3389/fbioe.2021.797067.
  • 37. Lin, R.-B., Xiang, S., Xing, H., Zhou, W. & Chen, B. (2019). Exploration of porous metal-organic frameworks for gas separation and purification, Coordination Chemistry Reviews, 378, pp. 87-103. DOI:10.1016/j.ccr.2017.09.027.
  • 38. Madden, D. G., O’Nolan, D., Chen, K.-J., Hua, C., Kumar, A., Pham, T., Forrest, K. A., Space, B., Perry, J. J., Khraisheh, M. & Zaworotko, M. J. (2019). Highly selective CO2 removal for one-step liquefied natural gas processing by physisorbents, Chemical Communications, 55, pp. 3219-3222. DOI:10.1039/C9CC00626E.
  • 39. Mahdipoor, H. R., Halladj, R., Ganji Babakhani, E., Amjad-Iranagh, S. & Sadeghzadeh Ahari, J. (2021). Synthesis, characterization, and CO 2 adsorption properties of metal organic framework Fe-BDC, RSC Advances, 11, pp. 5192-5203. DOI:10.1039/D0RA09292D.
  • 40. Mangal, S., Priya, S. S., Lewis, N. L. & Jonnalagadda, S. (2018). Synthesis and characterization of metal organic framework-based photocatalyst and membrane for carbon dioxide conversion, Materials Today: Proceedings, 5, pp. 16378-16389. DOI:10.1016/j.matpr.2018.05.134.
  • 41. Mason, J. A., Veenstra, M. & Long, J. R. (2014). Evaluating metal-organic frameworks for natural gas storage, Chem. Sci., 5, pp. 32-51. DOI:10.1039/C3SC52633J.
  • 42. Myers, A. L. (2002). Thermodynamics of adsorption in porous materials, AIChE Journal, 48, pp. 145-160. DOI:10.1002/aic.690480115.
  • 43. Naghdi, S., Shahrestani, M. M., Zendehbad, M., Djahaniani, H., Kazemian, H. & Eder, D. (2023). Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs), Journal of Hazardous Materials, 442, 130127. DOI:10.1016/j.jhazmat.2022.130127.
  • 44. Neimark, A. V., Ravikovitch, P. I., Grün, M., Schüth, F. & Unger, K. K. (1998). Pore Size Analysis of MCM-41 Type Adsorbents by Means of Nitrogen and Argon Adsorption, Journal of Colloid and Interface Science, 207, pp. 159-169. DOI:10.1006/jcis.1998.5748.
  • 45. Nuhnen, A. & Janiak, C. (2020). A practical guide to calculate the isosteric heat/enthalpy of adsorption via adsorption isotherms in metal-organic frameworks, MOFs, Dalton Transactions, 49, pp. 10295-10307. DOI:10.1039/D0DT01784A.
  • 46. Olivier, J. P. (1995). Modeling physical adsorption on porous and nonporous solids using density functional theory, Journal of Porous Materials, 2, pp. 9-17. DOI:10.1007/BF00486565.
  • 47. Olivier, J. P. (2000). Comparison of the experimental isosteric heat of adsorption of argon on mesoporous silica with density functional theory calculations, Studies in Surface Science and Catalysis, 128, pp. 81-87. DOI:10.1016/S0167-2991(00)80011-7.
  • 48. Oschatz, M. & Antonietti, M. (2018). A search for selectivity to enable CO2 capture with porous adsorbents, Energy & Environmental Science, 11, pp. 57-70. DOI:10.1039/C7EE02110K.
  • 49. Pajdak, A., Skoczylas, N., Dębski, A., Grzegorek, J., Maziarz, W. & Kudasik, M. (2019). CO2 and CH4 sorption on carbon nanomaterials and coals - Comparative characteristics, Journal of Natural Gas Science and Engineering, 72, 103003. DOI:10.1016/j.jngse.2019.103003.
  • 50. Park, H. J. & Suh, M. P. (2013). Enhanced isosteric heat, selectivity, and uptake capacity of CO2 adsorption in a metal-organic framework by impregnated metal ions, Chem. Sci., 4, pp. 685-690. DOI:10.1039/C2SC21253F.
  • 51. Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M. & Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proceedings of the National Academy of Sciences, 103, pp. 10186-10191. DOI:10.1073/pnas.0602439103.
  • 52. Qazvini, O. T., Babarao, R. & Telfer, S. G. (2021). Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework, Nature Communications, 12, 197. DOI:10.1038/s41467-020-20489-2.
  • 53. Qian, Q., Asinger, P. A., Lee, M. J., Han, G., Mizrahi Rodriguez, K., Lin, S., Benedetti, F. M., Wu, A. X., Chi, W. S. & Smith, Z. P. (2020). MOF-Based Membranes for Gas Separations, Chemical Reviews, 120, pp. 8161-8266. DOI:10.1021/acs.chemrev.0c00119.
  • 54. Rafati Jolodar, A., Abdollahi, M., Fatemi, S. & Mansoubi, H. (2024). Enhancing carbon dioxide separation from natural gas in dynamic adsorption by a new type of bimetallic MOF; MIL-101(Cr-Al), Separation and Purification Technology, 334, 125990. DOI:10.1016/j.seppur.2023.125990.
  • 55. Rieth, A. J., Wright, A. M. & Dincă, M. (2019). Kinetic stability of metal-organic frameworks for corrosive and coordinating gas capture, Nature Reviews Materials, 4, pp. 708-725. DOI:10.1038/s41578-019-0140-1.
  • 56. Senkovska, I. & Kaskel, S. (2008). High pressure methane adsorption in the metal-organic frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3, Microporous and Mesoporous Materials, 112, pp. 108-115. DOI:10.1016/j.micromeso.2007.09.016.
  • 57. Sircar, S., Mohr, R., Ristic, C. & Rao, M. B. (1999). Isosteric Heat of Adsorption: Theory and Experiment, The Journal of Physical Chemistry B, 103, pp. 6539-6546. DOI:10.1021/jp9903817.
  • 58. Sose, A. T., Cornell, H. D., Gibbons, B. J., Burris, A. A., Morris, A. J. & Deshmukh, S. A. (2021). Modelling drug adsorption in metal-organic frameworks: the role of solvent, RSC Advances, 11, pp. 17064-17071. DOI:10.1039/D1RA01746B.
  • 59. Strauss, I., Mundstock, A., Treger, M., Lange, K., Hwang, S., Chmelik, C., Rusch, P., Bigall, N. C., Pichler, T., Shiozawa, H. & Caro, J. (2019). Metal-Organic Framework Co-MOF-74-Based Host-Guest Composites for Resistive Gas Sensing, ACS Applied Materials & Interfaces, 11, pp. 14175-14181. DOI:10.1021/acsami.8b22002.
  • 60. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J. & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87, pp. 1051-1069. DOI:10.1515/pac-2014-1117.
  • 61. Tlili, N., Grévillot, G. & Vallières, C. (2009). Carbon dioxide capture and recovery by means of TSA and/or VSA, International Journal of Greenhouse Gas Control, 3, pp. 519-527. DOI:10.1016/j.ijggc.2009.04.005.
  • 62. Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M. H., Jakobsen, S., Lillerud, K. P. & Lamberti, C. (2011). Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory, Chemistry of Materials, 23, pp. 1700-1718. DOI:10.1021/cm1022882.
  • 63. Valverde, A., G.-Sainz, P., Orive, J., Larrea, E., Reizabal-Para, A., Tovar, G., Copello, G., Lázaro-Martinez, J. M., Rodriguez, B., Gonzalez-Navarrete, B., Quintero, Y., Rosales, M., García, A., Arriortua, M. I. & Fernández de Luis, R. (2021). Chapter Three - Porous, lightweight, metal organic materials: environment sustainability, in: Advanced Lightweight Multifunctional Materials, Costa, P., Costa, C. M., Lanceros-Mendez, S. (Eds.). Woodhead Publishing, pp. 49-129. DOI:10.1016/B978-0-12-818501-8.00012-3.
  • 64. Wierzbicki, M. (2019). Izosteryczne ciepło sorpcji metanu na wybranych węglach kamiennych, PRZEMYSŁ CHEMICZNY, 1, pp. 139-143. DOI:10.15199/62.2019.4.22.
  • 65. Xiao, T. & Liu, D. (2019). The most advanced synthesis and a wide range of applications of MOF-74 and its derivatives, Microporous and Mesoporous Materials, 283, pp. 88-103. DOI:10.1016/j.micromeso.2019.03.002.
  • 66. Xu, B., Zhang, H., Mei, H. & Sun, D. (2020). Recent progress in metal-organic framework-based supercapacitor electrode materials, Coordination Chemistry Reviews, 420, 213438. DOI:10.1016/j.ccr.2020.213438.
  • 67. Yulia, F., Utami, V. J., Nasruddin, N. & Zulys, A. (2019). Synthesis, Characterizations, and Adsorption Isotherms of CO2 on Chromium Terephthalate (MIL-101) Metal-organic Frameworks (MOFs), International Journal of Technology, 10, 1427. DOI:10.14716/ijtech.v10i7.3706.
  • 68. Zhou, J., Zeng, C., Ou, H., Yang, Q., Xie, Q., Zeb, A., Lin, X., Ali, Z. & Hu, L. (2021). Metal-organic framework-based materials for full cell systems: a review, Journal of Materials Chemistry C, 9, pp. 11030-11058. DOI:10.1039/D1TC01905H.
  • 69. Zylka, A., Krzywanski, J., Czakiert, T., Idziak, K., Sosnowski, M., de Souza-Santos, M. L., Sztekler, K. & Nowak, W. (2020). Modeling of the Chemical Looping Combustion of Hard Coal and Biomass Using Ilmenite as the Oxygen Carrier, Energies, 13, 5394. DOI:10.3390/en13205394.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04be2433-c55f-4c6a-a1c2-b68b347afd8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.