PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical simulation of heat generation at a cutting-tool surface during stock removal processes

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The heat generated in various cutting zones significantly influences machining, affects tool wear, and thereby reduces tool life. In this paper, a spline cubic interpolation is used to estimate the transient heat flux imposed on the surface of a carbide cutting tool during stock removal, at constant thermal properties and cutting velocity. Interpolation of instantaneously measured temperature data set by the polynomial of lowest possible degree that passes through the points of the dataset is obtained. A high-precision remote-sensing infrared thermometer is used to measure the temperature at the surface. For friction shear stress determination, a mounted sensing system detects strain gauges signals and computes them in the form of forces on the display screen. From thermal behavior point of view the final result is notably interesting: it highlights the feature of non-proportionality in temperature/heat flux variation.
Rocznik
Strony
423--436
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Badji Mokhtar University of Annaba P.O. Box 12, DZ−23000, Algeria
Bibliografia
  • 1. Taylor F.W., On the Art of Cutting Metals, The American Society of Mechanical Engineers, NY, 1907.
  • 2. Zhang J., Meng X., Du J., Xiao G., Chen Z., Yi M., Xu C., Modelling and prediction of cutting temperature in the machining of H13 hard steel of transient heat conduction, Materials, 14(12): 3176, 2021, doi: 10.3390/ma14123176.
  • 3. Ning J., Liang S.Y., A comparative study of analytical thermal models to predict the orthogonal cutting temperature of AISI 1045 steel, The International Journal of Advanced Manufacturing Technology, 102: 3109–3119, 2019, doi: 10.1007/s00170-019-03415-9.
  • 4. Augspurger T., Bergs T., Dobbeler B., Measurement and modeling of heat partitions and temperature fields in the workpiece for cutting Inconel 718, AISI 1045, Ti6Al4V, and AlMgSi0.5, Journal of Manufacturing Science and Engineering, 141(6): 061007, 2019, doi: 10.1115/1.4043311.
  • 5. D’addona D.M., Raykar S.J., Thermal modeling of tool temperature distribution during high pressure coolant assisted turning of Inconel 718, Materials, 12(3): 408, 2019, doi: 10.3390/ma12030408.
  • 6. Mzad H., Khelif R., Effect of spraying pressure on spray cooling enhancement of beryllium-copper alloy plate, Procedia Engineering, 157: 106–113, 2016, doi: 10.1016/ j.proeng.2016.08.344.
  • 7. Karaguzel U., Bakkal M., Budak E., Modeling and measurement of cutting temperatures in milling, Procedia CIRP, 46: 173–176, 2016, doi: 10.1016/j.procir.2016.03.182.
  • 8. Taler D., Grądziel S., Taler J., Measurement of heat flux density and heat transfer coefficient, Archives of Thermodynamics, 31(3): 3–18, 2010, doi: 10.2478/v10173-010-0011-z. 9. Grzesik W., Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique, International Journal of Machine Tools and Manufacture, 46(6): 651–658, 2006, doi: 10.1016/j.ijmachtools.2005.07.009.
  • 10. Samadi F., Kowsary F., Sarchami A., Estimation of heat flux imposed on the rake face of a cutting tool: A nonlinear complex geometry inverse heat conduction case study, International Communications in Heat and Mass Transfer, 39(2): 298–303, 2012, doi: 10.1016/j.icheatmasstransfer.2011.10.007.
  • 11. List G., Sutter G., Bouthiche A., Cutting temperature prediction in high speed machining by numerical modelling of chip formation and its dependence with crater wear, International Journal of Machine Tools and Manufacture, 54–55: 1–9, 2012, doi: 10.1016/j.ijmachtools.2011.11.009.
  • 12. Heigel J.C., Whitenton E., Lane B., Donmez M.A., Madhavan V., MoscosoKingsley W., Infrared measurement of the temperature at the tool–chip interface while machining Ti–6Al–4V, Journal of Materials Processing Technology, 243: 123–130, 2017, doi: 10.1016/j.jmatprotec.2016.11.026.
  • 13. Shan C., Zhang X., Shen B., Zhang D., An improved analytical model of cutting temperature in orthogonal cutting of Ti6Al4V, Chinese Journal of Aeronautics, 32(3): 759–769, 2019, doi: org/10.1016/j.cja.2018.12.001.
  • 14. Mzad H., A simple mathematical procedure to estimate heat flux in machining using measured surface temperature with infrared laser, Case Studies in Thermal Engineering, 6: 128–135, 2015, doi: 10.1016/j.csite.2015.09.001.
  • 15. Tanikić D., Marinković V., Manić M., Devedˇzić G., Randelović S., Application of response surface methodology and fuzzy logic based system for determining metal cutting temperature, Bulletin of the Polish Academy of Sciences: Technical Sciences, 64(2): 435– 445, 2016, doi: 10.1515/bpasts-2016-0049.
  • 16. Patne H.S., Kumar A., Karagadde S., Joshi S.S., Modeling of temperature distribution in drilling of titanium, International Journal of Mechanical Sciences, 133: 598–610, 2017, doi: 10.1016/j.ijmecsci.2017.09.024.
  • 17. Mirkoohi E., Bocchini P., Liang S.Y., Analytical temperature predictive modeling and non-linear optimization in machining, The International Journal of Advanced Manufacturing Technology, 102: 1557–1566, 2019, doi: 10.1007/s00170-019-03296-y.
  • 18. Ning J., Liang S.Y., Prediction of temperature distribution in orthogonal machining based on the mechanics of the cutting process using a constitutive model, Journal of Manufacturing and Materials Processing, 2(2): 37, 2018, doi: 10.3390/jmmp2020037.
  • 19. Afrasiabi M., Klippel H., Roethlin M., Wegener K., Smoothed particle hydrodynamics simulation of orthogonal cutting with enhanced thermal modeling, Applied Sciences, 11(3): 1020, 2021, doi: 10.3390/app11031020.
  • 20. Kumar A., Bhardwaj R., Joshi S.S., A finite-element heat transfer model for orthogonal cutting, Advances in Materials and Processing Technologies, 6(4): 686–702, 2020, doi: 10.1080/2374068X.2020.1741059.
  • 21. Su G., Xiao X., Du J., Zhang J., Zhang P., Liu Z., Xu C., On cutting temperatures in high and ultrahigh-speed machining, The International Journal of Advanced Manufacturing Technology, 107: 73–83, 2020, doi: 10.1007/s00170-020-05054-x.
  • 22. Nowakowski L., Skrzyniarz M., Blasiak S., Bartoszuk M., Influence of the cutting strategy on the temperature and surface flatness of the workpiece in face milling, Materials, 13(20): 4542, 2020, doi: 10.3390/ma13204542.
  • 23. Gosai M., Bhavsar S.N., Experimental study on temperature measurement in turning operation of hardened steel (EN36), Procedia Technology, 23: 311–318, 2016, doi: 10.1016/j.protcy.2016.03.032.
  • 24. Molinari A., Moufki A., A new thermomechanical model of cutting applied to turning operations. Part I. Theory, International Journal of Machine Tools and Manufacture, 45(2): 166–180, 2005, doi: 10.1016/j.ijmachtools.2004.07.004.
  • 25. Oxley P.L.B., The Mechanics of Machining: An Analytical Approach to Assessing Machinability, Ellis Horwood Ltd., Chichester, UK, 1989.
  • 26. Moufki A., Devillez A., Dudzinski D., Molinari A., Thermomechanical modeling of oblique cutting and experimental validation, International Journal of Machine Tools and Manufacture, 44(9): 971–989, 2004, doi: 10.1016/j.ijmachtools.2004.01.018.
  • 27. Taler J., Theory of transient experimental techniques for surface heat transfer, International Journal of Heat and Mass Transfer, 39(17): 3733–3748, 1996, doi: 10.1016/0017- 9310(96)00015-4.
  • 28. Bartoszuk M., Temperature and heat partition testing in the cutting zone for turning AISI 321 steel, Strojniˇski Vestnik – Journal of Mechanical Engineering, 66(11): 629–641, 2020, doi: 10.5545/sv-jme.2020.6840.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04ba1d39-4ae8-4860-9884-8a41dd5d045d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.