PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Application of the ERT to recognise the geological structure of frost‑riven cliffs localised in the Skalny Potok (Hrubý Jeseník Mts.)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the area of the Skalni Potok Nature Reserve (Hrubý Jesenik), studies of gneissic cliffs were carried out to determine the role of lithology in the process of their formation. The research included geometric measurements of vertical discontinuity zones of selected rock outcrops and the electrical resistivity tomography (ERT) measurements of strongly weathered subsurface layers. As a result of the measurement, the orientation of the main crack systems (NW–SE and NE–SW) responsible for the location of cliffs within the Skalni Potok Valley was obtained. In addition, the main crack directions for the gneiss occurring in the studied mountain region were identified. Interpretation of the ERT models allowed to characterise the structure of the rock mass, including the reach of the rainwater infiltration level and the depth of the weathering front.
Słowa kluczowe
Czasopismo
Rocznik
Strony
1759--1764
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • Faculty of Earth Sciences, University of Silesia in Katowice, Sosnowiec, Poland
  • Faculty of Earth Sciences, University of Silesia in Katowice, Sosnowiec, Poland
Bibliografia
  • 1. Akca I (2016) LRIS2D: a MATLAB package for the 2D inversion of DC resistivity/IP data. Acta Geophysicavol 64(2):443–462. https://doi.org/10.1515/acgeo-2015-0071
  • 2. Amini A, Ramazi H (2016) Application of electrical resistivity imaging for engineering site investigation. Acta Geophysica 64(4):2200–2213. https://doi.org/10.1515/acgeo-2016-0100
  • 3. Czudek T (2005) Vývoj reliéfu krajiny České republiky v kvartéru. Moravské zemské muzeum, Brno (in Czech)
  • 4. Demek J (1968) Comarison of cryoplanation terraces in Siberia and Europe. Przegląd Geograficzny, Tom XL 2:363–370
  • 5. Demek J (1969) Cryoplanation Terraces, Their Geographical Distribution, Genesis and Development. Rozpravy ČSAV, MPV, 79, Academia, seš. 4
  • 6. Deparis J, Jongmans D, Garambois S et al (2011) Geophysical detection and structural characterization of discontinuities in rock slopes. In: Rockfall engineering. Wiley, ISTE, pp 1–38
  • 7. Ehlen J (2002) Some effects of weathering on joints in granitic rocks. CATENA 49:91–109
  • 8. Fediuková E, Aichler J (2004) Geologická Mapa ČR ark. Bélá pod Pradědem. Český Geologický Ústav, Praha
  • 9. Goodfellow BW (2007) Relict non-glacial surfaces in former glaciated landscapes. Earth Sci Rev 80(1–2):47–73
  • 10. Hall K, Thorn C, Sumner P (2012) On the persistence of ‘weathering’. Geomorphology 149–150:1–10
  • 11. Harris Ch, Arenson L, Christiansen HH et al (2009) Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth Sci Rev 92:117–171
  • 12. Jeannin M, Garambois S, Jongmans D, Gregoire C (2004) Application of radar for investigating fractures in limestone cliffs (French Alps). In: Lacerda et al (eds) Landslides: evoluation and stabilization. Taylor & Francis Group, London, pp 781–787
  • 13. Kowalczyk S, Żukowska KA, Mendecki MJ, Łukasiak D (2017) Application of electrical resistivity imaging (ERI) for the assessment of peat properties: a case study of the Całowanie Fen, Central Poland. Acta Geophysica 65(1), 223-235
  • 14. Křižek M (2016) Periglacial landforms of the Hrubý Jesenik Mountains. In: Pánek T, Hradecký J (eds) Landscapes and landforms of the Czech Republic. Springer, Cham, pp 277–289
  • 15. Kuzak R, Żaba J (2011) Podstawy geologii strukturalnej, PWN. (in polish)
  • 16. Le Pera E, Critelli S, Sorriso-Valvo M (2001) Weathering of gneiss in Calabria, Southern Italy. CATENA 42:1–15
  • 17. Leucci G (2007) Geophysical investigations to study the physical–mechanical characteristics of the rock in a coastal environment: the cliff of Roca (Lecce, Italy). J Geophys Eng 4:462–475
  • 18. Liszkowski J, Stochlak J (1976) Szczelinowatość masywów skalnych. Wyd. Geologiczne. (in polish)
  • 19. Loke H (2003) Rapid 2D resistivity and IP inversion using last-squares method. Geotomo Softw Manual, Penang
  • 20. Lowe JJ, Walker MJC (1997) Reconstructing quaternary environments. Pearson Hall, Harlow
  • 21. Martín-García JM, Márquez R, Delgado G et al (2015) Relationships between quartz weathering and soil type (Entisol, Inceptisol and Alfisol) Sierra Nevada (southeast Spain). Soil Sci 4 66(1):179–193
  • 22. Matsuoka N (2001) Microgelivation versus macrogelivation: towards bridging the gap between laboratory and field frost weathering. Permafr Periglac Process 12:299–313
  • 23. Matsuoka N (2008) Frost weathering and rockwall erosion in the southeastern Swiss Alps: long-term (1994–2006) observations. Geomorphology 99:353–368
  • 24. Migoń P, Lidmar-Bergström K (2001) Weathering mantles and their significance for geomorphological evolution of central and northern Europe since the Mesozoic. Earth Sci Rev 56:285–324
  • 25. Nývlt D, Engel Z, Tyráček J (2011) Pleistocene glaciations of Czechia. In: Ehlers J, Gibbard PL, Hughes PD (eds) Quaternary glaciations-extent and chronology, a closer look. Developments in quaternary science, vol 15. Elsevier, Amsterdam, pp 37–46
  • 26. Pánek T, Kapustová V (2016) Long-term geomorphological history of the Czech Republic. In: Pánek T, Hradecký J (eds) Landscapes and landforms of the Czech Republic. Springer, Cham, pp 29–39
  • 27. Plán péce o přírodní rezervaci Skalní potok na období 2013–2022. (PDF) (cz.). In: Agentura ochrany přírody a krajiny České Republiki [on-line]
  • 28. Prosová M (1954) Studie o periglaciálnich zjevech v Hrubém Jeseniku. Prirodovedecky sbornik Ostravskeho kraje 15(1):1–15 (in Czech)
  • 29. Rapp A (1960) Recent development of mountain slopes in Karkevagge and surroundings, in Northern Scandinavia. Geogr Ann 42A:65–200
  • 30. Schön JH (ed) (2015) Physical properties of rocks. Fundamentals and principles of petrophysics, vol 65. Elsevier, Amsterdam
  • 31. Schrott L, Sass O (2008) Application of field geophysics in geomorphology: advances and limitations exemplified by case studies. Geomorphology 93:55–73
  • 32. Stan D, Stan-Kłeczek I (2014) Application of electrical resistivity tomography to map lithological differences and subsurface structures (Eastern Sudetes, Czech Republic). Geomorphology 221:113–123
  • 33. Stupnicka E (1997) Geologia regionalna Polski, Wydawnictwo Uniwersytetu Warszawskiego (in polish)
  • 34. Szczygieł J, Mendecki M, Hercman H. et al. (2019). Relict landslide development as inferred from speleothem deformation, tectonic data, and geoelectrics. Geomorphology 330:116–128
  • 35. Traczyk A, Migoń P (2003) Cold-climate landform patterns in the Sudetes. Effects of lithology, relief and glacial history. Acta Univ Carol Geogr 25:185–210
  • 36. Udphuay S, Günther T, Everett M et al (2011) Three-dimensional resistivity tomography in extreme coastal terrainamidst dense cultural signals: application to cliff stability assessment at the historic D—Day site. Geophys J Int 185:201–220
  • 37. Van Dam RL (2012) Landform characterization using geophysics—recent advances, applications, and emerging tools. Geomorphology 137:57–73
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04b99713-0fb9-4790-8b96-f0a3da872045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.