PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and Investigation the Effect of the Printing Parameters on the Mechanical and Physical Properties of PLA Parts Fabricated via FDM Printing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fused deposition modeling (FDM) is a commonly used additive manufacturing (AM) technique that creates prototypes and parts with intricate geometrical designs. It is gaining popularity since it enhances products by removing the need for expensive equipment. The printed item's mechanical properties are affected by the type of materials used, the printing process, and the printing parameters. The 3-D model of the polylactic acid (PLA) filament generated specimens was created using the Fused Deposition Modeling procedure and developed using Solid Works. This study investigates the effect of printing parameters on the mechanical and physical properties of samples printed using a Fused Deposition Modeling machine (Creality Ender-5 Pro). Six parameters are used: infill pattern, density, overlap percentage, layer thickness, shell thickness, and top/bottom layer number. Five levels were chosen for each FDM parameter. The results illustrated how printing parameters affected the mechanical and physical properties of samples, which were proven by ultimate tensile stress, surface roughness, and percentage of tensile average deviation. A comparison between the predicted results and the measured results was presented, and the maximum percentage error of the model, which fit the data well, was 0.54%, 0.3%, and 1.36% for ultimate tensile strength (UTS), surface roughness (Ra), and Tensile average deviation percentage respectively.
Twórcy
  • Production Engineering and Metallurgy Department, University of Technology-Iraq, Baghdad, Iraq
  • Production Engineering and Metallurgy Department, University of Technology-Iraq, Baghdad, Iraq
Bibliografia
  • 1. Trevor J.S., Mike A., Mark W., et al. 3D systems technology overview and new applications in manufacturing, engineering, science, and education. 3D Printing and Additive Manufacturing 2014; 1(3): 169–176. https://doi.org/10.1089/3dp.2014.1502
  • 2. G.D. Goh, Y.L. Yap, H.K.J. Tan, et al. Process-structure-properties in polymer additive manufacturing via material extrusion: a review. Critical Reviews in Solid State and Materials Sciences 2019; 45(2): 1–21. https://doi.org/10.1080/10408436.2018.1549977
  • 3. Vigneshwaran S., Oisik D., Rasoul E.N., et al. Polymer Recycling in Additive Manufacturing: an Opportunity for the Circular Economy. Materials Circular Economy 2020; 2(11). https://doi. org/10.1007/s42824-020-00012-0
  • 4. Adam M.P., Mark R., Joshua M.P., et al. Wood Furniture Waste-Based Recycled 3-D Printing Filaent. Forest Products Journal 2018; 68(1): 86-95. https://doi.org/10.13073/FPJ-D-17-00042
  • 5. Mohd N. A., Mohamad R. I., Mastura M. T., et al. Application of Taguchi Method to Optimize the Parameter of Fused Deposition Modeling (FDM) Using Oil Palm Fiber Reinforced Thermoplastic Composites. Polymers, 2022; 14(11): 2140. https:// doi.org/10.3390/polym14112140
  • 6. M. Kam, A. İpekçi, Ö. Şengül. Taguchi Optimization of Fused Deposition Modeling Process Parameters on Mechanical Characteristics of PLA+ Filament Material. Scientia Iranica B 2022; 29(1): 79-89. http://doi.org/10.24200/sci.2021.57012.5020
  • 7. Maria F.J., Tahseen F.A., Abdullah F.H. The effect of Infill Pattern on Tensile Strength of PLA Material in Fused Deposition Modeling (FDM) Process. Engineering and Technology Journal 2022; 40 (21): 1723- 1730. http://doi.org/10.30684/etj.2021.131733.1054
  • 8. Tahseen F.A., Khalida K.M., Hind B.A. The effect of FDM Process Parameters on the Compressive Property of ABS Prints. Journal of Hunan University (Natural Sciences) 2022; 49(7): 154-162. https:// doi.org/10.55463/issn.1674-2974.49.7.17
  • 9. R.A. Hamid, N.K. Marnyi, F.H. Hamezah, et al. Effect of different PLA filament colours and proces parameters towards the tensile strength of 3d printed parts. Proceedings of Malaysian Technical Universities Conference on Engineering and Technology (MUCET), 2021, 168-169.
  • 10. Selim B., Hatice V.Ö., Mehmet M.S. Comparison of Mechanical Properties of 3D-Printed Specimens Manufactured Via FDM with Various Inner Geometries. Journal of the Institute of Science and Technology 2021; 11(2): 1444-1454. https://doi. org/10.21597/jist.772977
  • 11. Mohd R.A., Nor A.R., Siti N.A.M., et al. Properties of 3D printed structure manufactured with integrated pressing mechanism in FDM. Journal of Mechanical Engineering Research and Developments 2021; 44(2): 122-131.
  • 12. Mohammadreza L.D. and Mohd K.A.M.A. The effects of Combined Infill Patterns on Mechanical Properties in FDM Process. Polymers 2020; 12(12): 2792. https://doi:10.3390/polym12122792
  • 13. Can T., Junwei L., Yang Y., et al. Effect of proces parameters on mechanical properties of 3D printed PLA lattice structures. Composites Part C: Open Access 2020; 3(100076). https://doi.org/10.1016/j. jcomc.2020.100076
  • 14. Muhammad S.C. and Aleksander C. Evaluating FDM Process Parameter Sensitive Mechanical Performance of Elastomers at Various Strain Rates of Loading. Materials 2020; 13(14). http:// doi:10.3390/ma13143202
  • 15. Teng C.Y. and Chin H.Y. Morphology and Mechanical Properties of 3D Printed Wood Fiber/Polylactic Acid Composite Parts Using Fused Deposition Modeling (FDM): The effects of Printing Speed. Polymers 2020; 12(6). http://doi:10.3390/polym12061334
  • 16. Cristina V., Liviu M., Mihai M., et al. Effect of manufacturing parameters on tensile properties of FDM printed specimens. In: Proc. of 1st Mediterranean Conference on Fracture and Structural Integrity, MedFract1, Procedia Structural Integrity, 2020, 313– 320. https://doi.org/10.1016/j.prostr.2020.06.040
  • 17. Mst F.A., S.H. Masood, Pio I., et al. Effects of part build orientations on fatigue behaviour of FDM- processed PLA material. Progress in Addittive Manufacturing 2015; 1: 21–28.
  • 18. Galantucci L.M., F. Lavecchia, G. Percoco. Experimental study aiming to enhance the surface finish of fused deposition modeled parts. CIRP Annals 2009; 58(1): 189–192.
  • 19. Sohail G., G. Hussain, Aaqib A., et al. Mechanical performance of honeycomb sandwich structures built by FDM printing technique. Journal of Thermoplastic Composite Materials 2021; 1-19. https:// doi.org/10.1177/0892705721997892
  • 20. Chamil A., Pimpisut S., Anura F. Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. International Journal of Lightweight Materials and Manufacture 2020; 3: 284-297. https://doi.org/10.1016/j.ijlmm.2020.03.003
  • 21. Krishna M.A., Pritish S., Dinesh B., et al. Analyzing the Impact of Print Parameters on Dimensional Variation of ABS specimens printed using Fused Deposition Modelling (FDM). Sensors International 2022; 3. https://doi.org/10.1016/j.sintl.2021.100149
  • 22. Maria F.J., Abdullah F.H., Tahseen F.A. Investigation of the Effect of Surface Roughness and Dimensional Accuracy on the Layer Thickness of PLA Parts Produced by the FDM Process. Progress in Engineering Technology V 2023; 183:19–29.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04b770d9-86d4-4c4c-b75f-562f1cfd5de9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.