PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of an open-switch fault detection algorithm for a three-phase interleaved DC–DC boost converter in a photovoltaic system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a novel fault detection algorithm for a three-phase interleaved DC–DC boost converter integrated in a photovoltaic system. Interleaved DC–DC converters have been used widely due to their advantages in terms of efficiency, ripple reductions, modularity and small filter components. The fault detection algorithm depends on the input current waveform as a fault indicator and does not require any additional sensors in the system. To guarantee service continuity, a fault tolerant topology is achieved by connecting a redundant switch to the interleaved converter. The proposed fault detection algorithm is validated under different scenarios by the obtained results.
Rocznik
Strony
661--676
Opis fizyczny
Bibliogr. 25 poz., fig., tab., wz.
Twórcy
  • Laboratory of Electrical Engineering, University of M’sila Seat of the wilaya of M’sila, M’sila 28000, Algeria
  • Laboratory of Electrical Engineering, University of M’sila Seat of the wilaya of M’sila, M’sila 28000, Algeria
Bibliografia
  • [1] Bose B.K., Global warming: energy, environmental pollution, and the impact of power electronics, IEEE Industrial Electronics Magazine, vol. 4, no. 1, pp. 6–17 (2010), DOI: 10.1109/MIE.2010.935860.
  • [2] Bevrani H., Ghosh A., Ledwich G., Renewable energy sources and frequency regulation: survey and new perspectives, IET Renewable Power Generation, vol. 4, no. 5, pp. 438–457 (2010), DOI:10.1049/iet-rpg.2009.0049.
  • [3] Bhatnagar P., Nema R.K., Maximum power point tracking control techniques: State-of-the-art in photovoltaic applications, Renewable and Sustainable Energy Reviews, vol. 23, pp. 224–241 (2013), DOI: 10.1016/j.rser.2013.02.011.
  • [4] Seddjar A., Kerrouche K.D.E., Wang L., Simulation of the proposed combined Fuzzy Logic Control for Maximum Power Point Tracking and Battery Charge Regulation used in CubeSat, Archives of Electrical Engineering, vol. 69, no. 3, pp. 521–543 (2020), DOI: 10.24425/aee.2020.133916.
  • [5] Ding K., Bian X.-G., Liu H.-H., Peng T., A MATLAB-simulink-based PV module model and its application under conditions of nonuniform irradiance, IEEE Trans. Energy Convers., vol. 27, no. 4, pp. 864–872 (2012), DOI: 10.1109/TEC.2012.2216529.
  • [6] Hazem H., Amr M.,Wagdi R.A.,A performance analysis of a hybrid golden section search methodology and a nature-inspired algorithm for MPPT in a solar PV system, Archives of Electrical Engineering, vol. 68, no. 3, pp. 611–627 (2020), DOI: 10.24425/aee.2019.129345.
  • [7] Elbarbary Z.M.S., Alranini M.A., Review of maximum power point tracking algorithms of PV system, Frontiers in Engineering and Built Environment, vol. 1, no. 1, pp. 68–80 (2021), DOI: 10.1108/FEBE03-2021-0019.
  • [8] Benyahia N. et al., MPPT controller for an interleaved boost dc-dc converter used in fuel cell electric vehicles, International Journal of Hydrogen Energy, vol. 39, no. 27, pp. 15196–15205 (2014), DOI:10.1016/j.ijhydene.2014.03.185.
  • [9] Farhani S. et al., Design and practical study of three phase interleaved boost converter for fuel cell electric vehicle, Journal of Power Sources, vol. 497 (2020), DOI: 10.1016/j.jpowsour.2020.228815.
  • [10] Hua-Wu L., Hong-Xing M., Jian-Feng J., Xi-Jun Y., Xing-Hua Y., An EL-model based passivity control of four-phase interleaved PFC, Archives of Electrical Engineering, vol. 62, no. 4, pp. 613–628 (2013), DOI: 10.2478/aee-2013-0049.
  • [11] Somkun S., Sirisamphanwong C., Sukchai S., A DSP-based interleaved boost DC–DC converter for fuel cell applications, International Journal of Hydrogen Energy, vol. 40, no. 19, pp. 6391–6404 (2015), DOI: 10.1016/j.ijhydene.2015.03.069.
  • [12] Zhang B., Hong D., Wang T., Zhen Z., Wang D., A novel two-phase interleaved parallel bidirectional DC/DC converter, Archives of Electrical Engineering, vol. 70, no. 1, pp. 219–231 (2021), DOI:10.24425/aee.2021.136063.
  • [13] Dhople S.V., Davoudi A., Dominguez-Garcia A.D., Chapman P.L., A unified approach to reliability assessment of multiphase DC–DC converters in photovoltaic energy conversion systems, IEEE Transactions on Industrial Electronics, vol. 27, no. 2, pp. 739–751 (2012), DOI: 10.1109/TPEL.2010.2103329.
  • [14] Petrone G., Spagnuolo G., Teodorescu R., Veerachary M., Vitelli M., Reliability issues in photovoltaic power processing systems, IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2569–2580 (2008), DOI: 10.1109/TIE.2008.924016.
  • [15] Lu B., Sharma S.K., A literature review of IGBT fault diagnostic and protection methods for power inverters, IEEE Transactions on Industry Applications, vol. 45, no. 5, pp. 1770–1777 (2009), DOI:10.1109/TIA.2009.2027535.
  • [16] Rothenhagen K., Fuchs F.W., Performance of diagnosis methods for IGBT open circuit faults in voltage source active rectifiers, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), Aachen, Germany, vol. 6, pp. 4348–4354 (2004), DOI:10.1109/PESC.2004.1354769.
  • [17] Nie S., Pei X., Chen Y., Kang Y., Fault diagnosis of PWM dc–dc converters based on magneticcomponent voltages equation, IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 4978–4988 (2014), DOI: 10.1109/TPEL.2013.2283881.
  • [18] Boudjellal B., Benslimane T., Open-switch fault-tolerant control of power converters in a grid connected photovoltaic system, International Journal of Power Electronics and Drive Systems, vol. 7, no. 4, pp. 1294–1308 (2016), DOI: 10.11591/ijpeds.v7.i4.pp1294-1308.
  • [19] Chen D., Liu Y., Zhang S., Fault diagnosis of T-type three-level inverter based on bridge voltages, Archives of Electrical Engineering, vol. 70, no. 1, pp. 73–87 (2021), DOI: 10.24425/aee.2021.136053.
  • [20] Ribeiro E., Cardoso A., Boccaletti C., Open-Circuit Fault Diagnosis in Interleaved DC–DC Converters, IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 3091–3102 (2014), DOI:10.1109/TPEL.2013.2272381.
  • [21] Shahbazi M., Jamshidpour E., Poure P., Saadate S., Zolghadri M., Open- and Short-Circuit Switch Fault Diagnosis for Nonisolated DC–DC Converters Using Field Programmable Gate Array, IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 4136–4146 (2013), DOI: 10.1109/TIE.2012.2224078.
  • [22] Ambusaidi K., Pickert V., Zahawi B., New circuit topology for fault tolerant H-bridge DC–DC converter, IEEE Transactions on Industrial Electronics, vol. 25, no. 6, pp. 1509–1516 (2010), DOI:10.1109/TPEL.2009.2038217.
  • [23] Kim S.Y., Nam K., Song H.S., Kim H.G., Fault diagnosis of a ZVS DC–DC converter based on DC-link current pulse shapes, IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1491–1494 (2008), DOI: 10.1109/TIE.2007.910627.
  • [24] Sheng H., Wang F., Tipton IV C.W., A fault detection and protection scheme for three-level dc–dc converters based on monitoring flying capacitor voltage, IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 685–697 (2012), DOI: 10.1109/TPEL.2011.2161333.
  • [25] Zhang B., Ping S., Long Y., Jiao Y., Wu B., Research on topology of a novel three-phase four-leg fault-tolerant NPC inverter, Archives of Electrical Engineering, vol. 71, no. 2, pp. 489–506 (2022), DOI: 10.24425/aee.2022.140724
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04b68d5f-3196-40ed-b2c2-fe9649074048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.