PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of automated mine ventilation control systems for Belarusian potash mines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent decades, two different approaches to mine ventilation control have been developed: ventilation on demand (VOD) and automatic ventilation control (AVC) systems. The latter was primarily developed in Russia and the CIS countries. This paper presents a comparative analysis of these two approaches; it was concluded that the approaches have much in common. The only significant difference between them is the optimal control algorithm used in automatic ventilation control systems. The paper describes in greater detail the algorithm for optimal control of ventilation devices that was developed at the scientific school of the Perm Mining Institute with the direct participation of the authors. One feature of the algo-rithm is that the search for optimal airflow distribution in the mine is performed by the system in a fully automated mode. The algorithm does not require information about the actual topology of the mine and target airflows for the fans. It can be easily programmed into microcontrollers of main fans and ventilation doors. Based on this algorithm, an automated ventilation control system was developed, which minimizes energy consumption through three strategies: automated search for optimal air distribution, dynamic air distribution control depending on the type of shift, and controlled air recirculation systems. Two examples of the implementation of an automated ventilation control system in potash mines in Belarus are presented. A significant reduction in the energy consumption for main fans’ operation obtained for both potash mines.
Rocznik
Strony
803--820
Opis fizyczny
Bibliogr. 34 poz., fot., rys.
Twórcy
  • Mining Institute UB RAS, 78-A Sibirskaya St., 614007, Perm, Russia
autor
  • Mining Institute UB RAS, 78-A Sibirskaya St., 614007, Perm, Russia
  • Mining Institute UB RAS, 78-A Sibirskaya St., 614007, Perm, Russia
Bibliografia
  • [1] Abramov F.A., Tjan R.B., Potemkin V.Y., 1978. Raschet ventiljacionnyh setej shaht i rudnikov (Calculation of ventilation networks of mines). Moscow: Nedra. 232.
  • [2] Acuna E., Allen C., 2017. Totten mine ventilation control system update: implementation and savings achieved with Level 1 “User control” and future plans. Proceedings of the 16th North American Mine Ventilation Symposium. Colorado School of Mines. Golden, USA, Session 3. 7 -14.
  • [3] Acuna E.I., Alvarez R.A., Hurtado J.P., 2016. Updated Ventilation On Demand review: implementation and savings achieved. Proceedings of the 1st International Conference of Underground Mining, in R Castro & M Valencia (eds), 606-617.
  • [4] Acuna E.I., Lowndes I.S., 2014. A Review of Primary Mine Ventilation System Optimization. Interfaces 44, 2. 163-175. doi:10.1287/inte.2014.0736.
  • [5] Babenko A.G., Lapin S.J., 2010. Novoe pokolenie shahtnyh informacionno-upravljajushhih sistem i sredstv obespechenija bezopasnosti na ugol’nyh shahtah (New generation of mining information and management systems and security means for coal mines). Izvestija vysshih uchebnyh zavedenij. Gornyj Zhurnal 1, 73-84.
  • [6] Bartsch E., Laine M., Andersen M., 2010. The Application and Implementation of Optimized mine Ventilation on Demand (OMVOD) at the Xstrata Nickel Rim South Mine, Sudbury, Ontario, Hardcastle and McKinnon (Eds.). Proceedings 13th US/North American Mine Ventilation Symposium, MIRARCO, Sudbury.
  • [7] Barnes R.J., (1989. A partial solution to optimal mine ventilation network design. Proc. 4th U.S. Mine Ventilation Sympos. (Society for Mining, Metallurgy & Exploration, Englewood, CO), 395-404.
  • [8] Brokering D.R., Loring D.M., Rutter C.J., 2017. Practical implementation of VOD at the Henderson mine. Proceeding of the 16th North American Mine Ventilation Symposium, Session 3, 15-22.
  • [9] Chatterjee A., Xia X., Zhang L., 2014. Optimisation of mine ventilation fan speeds on demand. 2014 International Con-ference on the Eleventh Industrial and Commercial Use of Energy. doi:10.1109/icue.2014.6904187.
  • [10] De Vilhena Costa L., Margarida da Silva J., 2019. Cost-saving electrical energy consumption in underground ventilation by the use of ventilation on demand. Mining Technology, 1-8. doi:10.1080/25726668.2019.1651581.
  • [11] Dziurzyński W., Krach A., Palka T., 2017. Airflow Sensitivity Assessment Based on Underground Mine Ventilation Systems Modeling. Energies 10 (10), 1451. DOI: 10.3390/en10101451.
  • [12] Hall A.E., McHaina D.M., Hardcastle S., 1990. Controlled recirculation in Canadian underground potash mines () Mining Science and Technology 10 (3), 305-314.
  • [13] Hardcastle S.G., Gangal M.K., Leung E., 1998. Green and economic mine ventilation with an integrated air management system. In: Mine Planning and Equipment Selection. Balkema, Rotterdam, 785-793.
  • [14] Hardcastle S.G., Gangal M.K., Schreer M. Gauthier P., 1999. Ventilation-on-demand – quantity or quality – A pilot trial at Barrick Gold’s Bousquet mine, Proc. 8th U.S. Mine Ventilation Symposium, Rolla, Missouri. 31-38.
  • [15] Hardcastle S., Kocsis C., O’Connor D., 2006. Justifying ventilation-on-demand in a Canadian mine and the need for process based simulation. J.M. Mutmansky and R.V. Ramani (Eds.). Proceedings 11th U.S. /North American Mine Ventilation Symposium, The Pennsylvania State University, University Park, Pennsylvania.
  • [16] Hardcastle S.G., Kocsis C., 2002. The ventilation challenge – A Canadian perspective on maintaining a good working environment in deep mines. Procs. ACG Deep Mining Symposium. Perth.
  • [17] Huang C., Wang Y.J., 1993. Mine ventilation network optimization using the generalized reduced gradient method. Proc. 6th U.S. Mine Ventilation Sympos. (Society for Mining, Metallurgy & Exploration, Englewood, CO), 153-161.
  • [18] Jacques E.J., 1991. A solution to the optimal setting of air flowcontrol devices in a ventilation network. Proc. 5th US Mine Ventilation Sympos. (Society for Mining, Metallurgy & Exploration, Englewood, CO), 411-415.
  • [19] Kashnikov A.V., Levin L.Y., 2019. Fan and regulators fuzzy control in mine ventilation systems. Proceedings of 2019 22nd International Conference on Soft Computing and Measurements, SCM 2019, art. no. 8903698, 85-88.
  • [20] Kazakov B.P., Shalimov A.V., 2012. Development of energy-saving automatic control of aeration mines. Proceedings of Higher Education Establishments. Mining Journal.
  • [21] Kruglov Yu.V. Semin M.A., 2013. Improving the algorithm of effective air management in ventilation systems of complex topology, Bulletin of PNRPU. Geology. Oil & Gas Engineering & Mining 9, 106-115.
  • [22] Kruglov Yu.V., Levin L.Yu., Kiryakov A.S., Butakov S.V., Shagbutdinov R.I., 2013. Usage of the system for automatic optimal of ventilation at Berezivskiy mine of “Belaruskali” OJSC. Eurasian Mining 2, 32-34.
  • [23] Levin L.Y., Semin M.A., 2017. Conception of automated mine ventilation control system and its implementation on Bela-russian potash mines. Proceedings of the 16th North American Mine Ventilation Symposium. – Colorado 17.1-17.8.
  • [24] Li B.R.., Inoue M., Shen S.B., 2018. Mine Ventilation Network Optimization Based on Airflow Asymptotic Calculation Method. J. Min. Sci. 54, 1, 99-110. DOI: 10.1134/S1062739118013413.
  • [25] Lowndes I.S., Fogarty T., Yang Z.Y., 2005. The application of genetic algorithms to optimize the performance of a mine ventilation network: The influence of coding method and population size. Soft Comput. 9, 7, 493-506.
  • [26] Mester I.I., Zasuhin I.N. 1974. Avtomatizacija kontrolja i regulirovanija rudnichnogo provetrivanija (Automation of control and regulation of mine ventilation.). Moscow: Nedra, 240 p.
  • [27] Nel A.J.H., Arndt D.C., Vosloo J.C., Mathews M.J., 2019. Achieving energy efficiency with medium voltage variable speed drives for ventilation-on-demand in South African mines. Journal of Cleaner Production. doi:10.1016/j.jclepro.2019.05.376.
  • [28] Pritchard C., Scott D., Frey G., 2013. Case study of controlled recirculation at a Wyoming trona mine. Trans. Soc. Min. Metall. Explor. Inc. 334 (1), 444-448.
  • [29] Puchkov L. A., Bakhvalov L. A., 1992. Methods and algorithms of automated mine ventilation control (Metody i algoritmy avtomaticheskogo upravleniya provetrivaniem ugolnyh shaht). Moscow, “Nedra” Publishing house.
  • [30] Tran-Valade T., Allen C., 2013. Ventilation-On-Demand key consideration for the business case. Proceedings of the Toronto 2013 CIM Conference, Toronto, Canada.
  • [31] Tsoy S.V., 1975. Automated control of mine ventilation networks (avtomaticheskoe upravlenie ventilyacionnymi sistemami shaht). Almaty: “Nauka” Publishing house.
  • [32] Tsoy S.V., Rogov E.I., 1968. Principle of maximum and optimal policy of ventilation and hydraulic networks control (Princip minimuma i optimalnaya politika upravleniya ventilyacionnymi i gidravlicheskimi setyami). Almaty: “Nauka” Publishing house.
  • [33] Tuck M.A., Finch C., Holden J., 2006. Ventilation on demand: A preliminary study for Ballarat Goldfields NL. 11-th U.S./North American Mine Ventilation Symposium. 11-14.
  • [34] Wallace K., Prosser B., Stinnette, J. D., 2015. The practice of mine ventilation engineering. International Journal of Mining Science and Technology 25 (2), 165-169. doi:10.1016/j.ijmst.2015.02.001.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04b3d1f2-4ac5-4859-8136-346fa33a14a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.