PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Second-order maximum principle controlled weakly singular Volterra integral equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work studies a class of singular Volterra integral equations that are (controlled) and can be applied to memory-related problems. For optimum controls, we prove a second-order Pontryagin type maximal principle.
Rocznik
Strony
863--880
Opis fizyczny
Bibliogr. 8 poz., wzory
Twórcy
  • Department of Mathematics, Eastern Mediterranean University, Mersin 10, 99628, T.R. North Cyprus, Turkey
  • Department of Mathematics, Eastern Mediterranean University, Mersin 10, 99628, T.R. North Cyprus, Turkey
Bibliografia
  • [1] P. Lin and J. Yong: Controlled singular Volterra integral equations and Pontryagin maximum principle. SIAM Journal on Control and Optimization, 58(1), (2020), 136-164. DOI: 10.1137/19M124602X
  • [2] J.J.Gasimov, J.A. Asadzade and N.I. Mahmudov: Pontryagin maximum principle for fractional delay differential equations and controlled weakly singular Volterra delay integral equations. arXiv preprint, (2023). DOI: 10.48550/arXiv.2309.14007
  • [3] M.J. Mardanov, K.B. Mansimov and N.H. Abdullayeva: Integral necessary condition of optimality of the second order for control problems described by system of integro-differential equations with delay. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 22(2), (2018), 254-268. DOI: 10.14498/vsgtu1597
  • [4] A.A. Abdullayev and K.B. Mansimov: Multipoint necessary optimality conditions for singular controls in processes described by the system of volterra integral equations. Cybernetics and Systems Analysis, 49(6), (2013), 845-851.
  • [5] M.J. Mardanov and T.K. Melikov: On the theory of singular optimal controls in dynamic systems with control delay. Computational Mathematics and Mathematical Physics. 57(5), (2017), 749-69. DOI: 10.1134/S0965542517050086
  • [6] J. Moon: A Pontryagin maximum principle for terminal state-constrained optimal control problems of Volterra integral equations with singular kernels. AIMS Mathematics, 8(10), (2023), 22924-22943. DOI: 10.3934/math.20231166
  • [7] S.S. Susubov and E.N. Mahmudov: Necessary optimality conditions for quasi-singular controls for systems with Caputo fractional derivatives. Archives of Control Sciences, 33(3), (2023), 463-496. DOI: 10.24425/acs.2023.146955
  • [8] S.S. Yusubov and E.N. Mahmudov: Optimality conditions of singular controls for systems with Caputo fractional derivatives. Journal of Industrial and Management Optimization, 19(1), (2023). DOI: 10.3934/jimo.2021182
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04b36e2a-c06c-434f-b967-e6a1922e10b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.