PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The impact of surface currents and sea level on the wave field evolution during St. Jude storm in the eastern Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A third generation numerical wave model SWAN (Simulating WAves Nearshore) was applied to study the spatio-temporal effect of surface currents and sea level height on significant wave height; and to describe the mechanisms responsible for wave–current interaction in the eastern Baltic Sea. Simulation results were validated by comparison with in situ wave measurements in deep and shallow water, carried out using the directional wave buoy and RDCP respectively, and with TerraSAR-X imagery. A hindcast period from 23 to 31 October 2013 included both a period of calm to moderate weather conditions and a severe North-European windstorm called St. Jude. The prevailing wind directions were southerly to westerly. Four simulations with SWAN were made: a control run with dynamical forcing by wind only; and simulations with additional inputs of surface currents and sea level, both separately and combined. A clear effect of surface currents and sea level on the wave field evolution was found. It manifested itself as an increase or decrease of significant wave height of up to 20%. The strength of the interaction was influenced by the propagation directions of waves and surface currents and the severity of weather conditions. An increase in the wave height was mostly seen in shallower waters and in areas where waves and surface currents were propagating in opposite directions. In deeper parts of the eastern Baltic Sea and in case of waves and surface currents propagating in the same direction a decrease occurred.
Czasopismo
Rocznik
Strony
176--186
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr., mapy
Twórcy
autor
  • Tallinn University of Technology, Marine Systems Institute, Tallinn, Estonia
  • Tallinn University of Technology, Marine Systems Institute, Tallinn, Estonia
autor
  • Helmholtz-Zentrum Geesthacht, Centre for Material and Coastal Research, Geesthacht, Germany
autor
  • University of Tartu, Estonian Marine Institute, Estonia
autor
  • Tallinn University of Technology, Marine Systems Institute, Tallinn, Estonia
autor
  • Tallinn University of Technology, Marine Systems Institute, Tallinn, Estonia
  • Estonian Environment Agency, Estonian Weather Service, Estonia
Bibliografia
  • [1] Alari, V., 2013. Multi-scale wind wave modeling in the Baltic Sea. (PhD Dissertation). Tallinn Univ. Technol., 134 pp.
  • [2] Baltic Sea Hydrographic Commission, 2013. Baltic Sea Bathymetry Database version 0.9.3, (Downloaded from http://data.bshc. pro/ on 21.03.2015).
  • [3] Battjes, J. A., Janssen, J. P. F. M., 1978. Energy loss and set-up due to breaking of random waves. In: Proc. of the 16th International Conference on Coastal Engineering. 569—587, http://dx.doi.org/ 10.1061/9780872621909.034.
  • [4] Booij, N., Ris, R. C., Holthuijsen, L. H., 1999. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. 104 (C4), 7649—7666, http://dx.doi.org/10.1029/ 98JC02622.
  • [5] Bretherton, F. P., Garrett, C. J. R., 1968. Wavetrains in inhomogeneous moving media. Proc. Roy. Soc. A: Math. Phys. 302 (1471), 529— 554, http://dx.doi.org/10.1098/rspa.1968.0034.
  • [6] Feistel, R., Nausch, G., Wasmund, N., 2008. State and Evolution of the Baltic Sea, 1952—2005: A Detailed 50-year Survey of Meteorology and Climate, Physics, Chemistry, Biology and Marine Environment. John Wiley & Sons, Hoboken, 712 pp.
  • [7] Feser, F., Barcikowska, M., Krueger, O., Schenk, F., Weisse, R., Xia, L., 2015. Storminess over the North Atlantic and northwestern Europe — a review. Q. J. Roy. Meteor. Soc. 141 (687), 350—382, http://dx.doi.org/10.1002/qj.2364.
  • [8] Funkquist, L., Kleine, E., 2007. An introduction to HIROMB, an operational baroclinic model for the Baltic Sea. SMHI Rep. Oceanogr. 37, 1—39.
  • [9] Guedes Soares, C., de Pablo, H., 2006. Experimental study of the transformation of wave spectra by a uniform current. Ocean Eng. 33 (3—4), 293—310, http://dx.doi.org/10.1016/j.oceaneng.2005. 05.005.
  • [10] Hasselmann, K., 1974. On the spectral dissipation of ocean waves due to whitecapping. Bound.-Lay. Meteorol. 6 (1), 107—127, http:// dx.doi.org/10.1007/BF00232479.
  • [11] Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., 1973. Measurements of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONS-WAP). Deutches Hydrogr. Inst.
  • [12] Jaagus, J., Kull, A., 2011. Changes in surface wind directions in Estonia during 1966—2008 and their relationships with large-scale atmospheric circulation. Est. J. Earth Sci. 60 (4), 220—231, http://dx.doi.org/10.3176/earth.2011.4.03.
  • [13] Kahma, K. K., Petterson, H., 1993. Wave Statistics from the Gulf of Finland. Finnish Inst. Marine Rep., Intern. Rep. 1.
  • [14] Lagemaa, P., 2012. Operational forecasting in Estonian marine waters. (Ph.D. diss.). Tallinn Univ. Tech., 130 pp.
  • [15] Leppäranta, M., Myrberg, K., 2009. Physical Oceanography of the Baltic Sea. Springer-Verlag, Berlin, Heidelberg, 378 pp., http:// dx.doi.org/10.1007/978-3-540-79703-6.
  • [16] Longuet-Higgins, M. S., Stewart, R. W., 1960. Changes in the form of short gravity waves on long waves and tidal currents. J. Fluid Mech. 8 (4), 565—583, http://dx.doi.org/10.1017/ S0022112060000803.
  • [17] Longuet-Higgins, M. S., Stewart, R. W., 1961. The changes in amplitude of short gravity waves on steady non-uniform currents. J. Fluid Mech. 10 (4), 529—549, http://dx.doi.org/10.1017/ S0022112061000342.
  • [18] Longuet-Higgins, M. S., Stewart, R. W., 1964. Radiation stresses in water waves; a physical discussion, with applications. Deep Sea Res. Oceanogr. Abstr. 11 (4), 529—562, http://dx.doi.org/ 10.1016/0011-7471(64)90001-4.
  • [19] Miles, J. W., 1957. On the generation of surface waves by shear flows. J. Fluid Mech. 3 (2), 185—204, http://dx.doi.org/10.1017/ S0022112057000567.
  • [20] Phillips, O. M., 1957. On the generation of waves by turbulent wind. J. Fluid Mech. 2 (5), 417—445, http://dx.doi.org/10.1017/ S0022112057000233.
  • [21] Raudsepp, U., Laanemets, J., Haran, G., Alari, V., Pavelson, J., Kõuts, T., 2011. Flow, waves, and water exchange in the Suur Strait, Gulf of Riga, in 2008. Oceanologia 53 (1), 35—56, http:// dx.doi.org/10.5697/oc.53-1.035.
  • [22] Soomere, T., Behrens, A., Tuomi, L., Nielsen, J. W., 2008. Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun. Nat. Hazards Earth Syst. 8 (1), 37—46, http:// dx.doi.org/10.1016/j.ecss.2014.08.001.
  • [23] Suursaar, Ü., 2013. Locally calibrated wave hindcasts in the Estonian coastal sea in 1966—2011. Est. J. Earth Sci. 62 (1), 42—56, http:// dx.doi.org/10.5697/oc.54-3.421.
  • [24] Suursaar, Ü., Kullas, T., Aps, R., 2012. Currents and waves in the northern Gulf of Riga: measurements and long-term hindcast. Oceanologia 54 (3), 421—447, http://dx.doi.org/10.5697/oc.54- 3.421.
  • [25] The SWAN team, 2013a. SWAN: Scientific and Technical Documentation. Cycle III version 40.91. Delft University of Technology, Department of Civil Engineering, The Netherlands.
  • [26] The SWAN team, 2013b. SWAN: User Manual. Cycle III version 40.91. Delft University of Technology, Department of Civil Engineering, The Netherlands.
  • [27] Tuomi, L., Pettersson, H., Fortelius, C., Tikka, K., Björkqvist, J. V., Kahma, K. K., 2014. Wave modelling in archipelagos. Coast. Eng. 83, 205—220, http://dx.doi.org/10.1016/j.coastaleng.2013.10.011.
  • [28] Unden, P., Rontu, L., Jarvinen, H., Lynch, P., Calvo, J., Cats, G., Cuxart, J., Eerola, K., Fortelius, C., Garcia-Moya, J. A., Jones, C., Lenderlink, G., McDonald, A., McGrath, R., Navascues, B., Nielsen, N. W., Odegaard, V., Rodriguez, E., Rummukainen, M. A., 2002. HIRLAM-5 Scientific Documentation. Swedish Meteorol. Hydrol. Inst., Sweden.
  • [29] Van der Westhuysen, A. J., 2012. Spectral modeling of wave dissipation on negative current gradients. Coast. Eng. 68, 17—30, http://dx.doi.org/10.1016/j.coastaleng.2012.05.001.
  • [30] Whitham, G. B., 1974. Linear and Nonlinear Waves. John Wiley, New York, 55 pp.
  • [31] Wolf, J., Prandle, D., 1999. Some observations of wave—current interaction. Coast. Eng. 37 (3), 471—485, http://dx.doi.org/ 10.1016/S0378-3839(99)00039-3.
  • [32] Wolski, T., Wiśniewski, B., Giza, A., Kowalewska-Kalkowska, H., Boman, H., Grabbi-Kaiv, S., Hammarklint, T., Holfort, J., Lydeikaite, Ž., 2014. Extreme sea levels at selected stations on the Baltic Sea coast. Oceanologia 56 (2), 259—290, http://dx.doi. org/10.5697/oc.56-2.259.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04b27c86-28c6-4226-afba-3ec7fe4015f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.