Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The numerical solutions are obtained for rotating beams; the inclusion of centrifugal force term makes it difficult to get the analytical solutions. In this paper, we solve the free vibration problem of rotating Rayleigh beam using Chebyshev and Legendre polynomials where weak form of meshless local Petrov-Galerkin method is used. The equations which are derived for rotating beams result in stiffness matrices and the mass matrix. The orthogonal polynomials are used and results obtained with Chebyshev polynomials and Legendre polynomials are exactly the same. The results are compared with the literature and the conventional finite element method where only first seven terms of both the polynomials are considered. The first five natural frequencies and respective mode shapes are calculated. The results are accurate when compared to literature.
Wydawca
Czasopismo
Rocznik
Tom
Strony
301--–318
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, India
Bibliografia
- [1] R. Ganguli. Finite Element Analysis of Rotating Beams. Springer, Singapore, 2017.
- [2] R. Ganguli and V. Panchore. The Rotating Beam Problem in Helicopter Dynamics. Springer, Singapore, 2018.
- [3] S.N. Atluri. The Meshless Method (MLPG) for Domain and BIE Discretizations. Tech Science Press, Forsyth, 2004.
- [4] G.R. Liu. Meshfree Methods. CRC Press, New York, 2003.
- [5] I.S. Raju, D.R. Phillips, and T. Krishnamurthy. A radial basis function approach in the meshless local Petrov-Galerkin method for Euler-Bernoulli beam problems. Computational Mechanics, 34:464–474, 2004. doi: 10.1007/s00466-004-0591-z.
- [6] D. Hu, Y. Wang, Y. Li, Y. Gu and X. Han. A meshfree-based local Galerkin method with condensation of degree of Freedom. Finite Elements in Analysis and Design, 78:16–24, 2014. doi: 10.1016/j.finel.2013.09.004.
- [7] S. De Marchi and M.M. Cecchi. The polynomial approximation in finite element method. Journal of Computational and Applied Mathematics, 57(1-2):99–114, 1995. doi: 10.1016/0377-0427(93)E0237-G.
- [8] V. Panchore, R. Ganguli, and S.N. Omkar. Meshless local Petrov-Galerkin method for rotating Euler-Bernoulli beam. Computer Modeling in Engineering and Sciences, 104(5):353–373, 2015. doi: 10.3970/cmes.2015.104.353.
- [9] V. Panchore, R. Ganguli, and S.N. Omkar. Meshless local Petrov-Galerkin method for rotating Timoshenko beam: a locking-free shape function formulation. Computer Modeling in Engineering and Sciences, 108(4):215–237, 2015. doi: 10.3970/cmes.2015.108.215.
- [10] W. Johnson. Helicopter Theory. Dover Publications, New York, 1980.
- [11] A. Bokaian. Natural frequencies of beams under tensile axial loads. Journal of Sound and Vibration, 142(3):481–498, 1990. doi: 10.1016/0022-460X(90)90663-K.
- [12] S.V. Hoa. Vibration of a rotating beam with tip mass. Journal of Sound and Vibration, 67(3):369–381, 1979. doi: 10.1016/0022-460X(79)90542-X.
- [13] H.D. Hodges and M.J. Rutkowski. Free-vibration analysis of rotating beams by a variable-order finite element method. AIAA Journal, 19(11):1459–1466, 1981. doi: 10.2514/3.60082.
- [14] J. Chung and H.H. Yoo. Dynamic analysis of a rotating cantilever beam by using the finite element method. Journal of Sound and Vibration, 249:147–164, 2002. doi: 10.1006/jsvi.2001.3856.
- [15] R.L. Bisplinghoff, H. Ashley, and R.L. Halfman. Aeroelasticity. Dover Publications, New York, 1996.
- [16] V. Giurgiutiu and R.O. Stafford. Semi-analytical methods for frequencies and mode shapes of rotor blades. Vertica, 1:291–306, 1977.
- [17] J.B. Gunda and R. Ganguli. Stiff-string basis functions for vibration analysis of high speed rotating beams. Journal of Applied Mechanics, 75(2):0245021, 2008. doi: 10.1115/1.2775497.
- [18] V. Panchore and R. Ganguli. Quadratic B-spline finite element method for a rotating non- uniform Rayleigh beam. Structural Engineering and Mechanics, 61(6):765–773, 2017. doi: 10.12989/sem.2017.61.6.765.
- [19] V. Panchore and R. Ganguli. Quadratic B-spline finite element method for a rotating non-uniform Euler-Bernoulli beam. International Journal for Computational Methods in Engineering Science and Mechanics, 19(5):340–350, 2018. doi: 10.1080/15502287.2018.1520757.
- [20] T. Rabczuk, J-H Song, X. Zhuang, and C. Anitescu. Extended Finite Element and Meshfree Methods. Elsevier, London, 2020.
- [21] J.R. Xiao and M.A. McCarthy. Meshless analysis of the obstacle problem for beams by the MLPG method and subdomain variational formulations. European Journal of Mechanics A/Solid, 22(3):385–399, 2003. doi: 10.1016/S0997-7538(03)00050-0.
- [22] J.Y. Cho and S. N. Atluri. Analysis of shear flexible beams, using the meshless local Petrov- Galerkin method, based on a locking-free formulation. Engineering Computations, 18(1-2):215–240, 2001. doi: 10.1108/02644400110365888.
- [23] J. Sladek, V. Sladek, S. Krahulec, and E. Pan. The MLPG analyses of large deflections of magnetoelectroelastic plates. Engineering Analysis with Boundary Elements, 37(4):673–682, 2013. doi: 10.1016/j.enganabound.2013.02.001.
- [24] S.N. Atluri, J.Y. Cho, and H.-G. Kim. Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations. Computational Mechanics, 24:334–347, 1999. doi: 10.1007/s004660050456.
- [25] J.R. Banerjee and D.R. Jackson. Free vibration of a rotating tapered Rayleigh beam: A dynamic stiffness method of solution. Computers and Structures, 124:11–20, 2013. doi: 10.1016/j.compstruc.2012.11.010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04aa0f37-dec8-482d-a621-d274efa4f4e7