PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Nanostruktury tlenku miedzi w zastosowaniach fototermicznych

Identyfikatory
Warianty tytułu
EN
Copper oxide nanostructures for photothermal applications
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono wyniki badań strukturalnych wykonanych za pomocą skaningowej i transmisyjnej mikroskopii elektronowej, dyfrakcji rentgenowskiej oraz spektroskopii w podczerwieni tlenku miedzi w postaci nanodrutów otrzymanych w procesie termicznego utleniania. Ponadto przeprowadzono eksperymenty oddziaływania promieniowania elektromagnetycznego z nanodrutami CuO.
EN
In this work the results of structural studies, performed by scanning electron microscopy and transmission electron microscopy, X-ray diffraction and infrared spectroscopy of copper oxide in nanorods form obtained in thermal oxidation, were presented. Moreover, interaction between CuO nanorods and electromagnetic radiation was investigated.
Rocznik
Strony
45--49
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
  • Sieć Badawcza Łukasiewicz – Instytut Tele- i Radiotechniczny, Ratuszowa 11, 03-450 Warszawa
  • Sieć Badawcza Łukasiewicz – Instytut Tele- i Radiotechniczny, Ratuszowa 11, 03-450 Warszawa
Bibliografia
  • [1] Zhao Y., Dunn A., Lin J. Shi D. 2019. “Photothermal effect of nanomaterials for efficient energy applications". Novel Nanomaterials for Biomedical, Environmental and Energy Applications in Micro and Nano Technologies, ed. Wang X and Chen X (Elsevier) : 415-434.
  • [2] Yang Y., Sun R. Wang X. 2017. “Ag nanowires functionalized cellulose textiles for supercapacitor and photothermal conversion". Materials Letters 189 : 248-251.
  • [3] Wu X., Robson M. E., Phelps J. L., Tan J. S., Shao B., Owens G., Xu H. 2019. “A flexible photothermal cotton-CuS nanocage- agarose aerogel towards portable solar steam generation". Nano Energy 56 : 708-715.
  • [4] Zeng W., Suo L., Zhang C., Wu D. Zhu H. 2019. “AgI-Ag2S heterostructures for photothermal conversion and solar energy harvesting". Journal of the Taiwan Institute of Chemical Engineers 95 : 273-280.
  • [5] Chen H., Shao L., Ming T., Sun Z., Zhao C., Yang B., Wang J. 2010. “Understanding the photothermal conversion efficiency of gold nanocrystals" Small 6 : 2272-80.
  • [6] Liu X., Li B., Fu F., Xu K., Zou R., Wang Q., Zhang B., Chen Z., Hu J. 2014. “Facile synthesis of biocompatible cysteine coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy". Dalton Trans 43 : 11709-15.
  • [7] Abadeer N. S., Murphy C. J. 2016. “Recent progress in cancer thermal therapy using gold nanoparticles". J Phys Chem C 120 : 4691-716.
  • [8] Jiang K., Smith D. A., Pinchuk A. 2013. “Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles". J Phys Chem C 117 : 27073-80.
  • [9] Zhao Y., Sadat M. E., Dunn A., Xu H., Chen C. H., Nakasuga W., Ewing R. C., Shi D. 2017. “Photothermal effect on Fe3O4 nanoparticles irradiated by white-light for energy-efficient window applications". Solar Energy Materials & Solar Cells 161 : 247-254.
  • [10] Zhang R., Xu J., Lu C., Xu Z. 2018. “Photothermal application of SmCoO3/SBA-15 catalysts synthesized by impregnation method". Materials Letters 228 : 199-202.
  • [11] Wang J., Shi D. 2017. “Spectral selective and photothermal nano structured thin films for energy efficient windows". Applied Energy 208 : 83-96.
  • [12] Zhou J., Meng L., Lu Q. 2010. “Core@shell nanostructures for photothermal conversion: Tunable noble metalnanoshells on crosslinked polymer submicrospheres". J.Mater.Chem. 20 : 5493-5498.
  • [13] Fang J., Xuan Y. 2017. “Investigation of optical absorption and photothermal conversion characteristics of binary CuO/ZnO nanofluids". RSC Adv. 7 : 56023-33.
  • [14] Filipic G., Cvelbar U. 2012. “Copper oxide nanorods: a review of growth". Nanotechnology 23 : 194001-16.
  • [15] Yang Ch., Su X., Xiao F., Jian J., Wang J. 2011. “Gas sensing properties of CuO nanorods synthesized by a microwave assisted hydrothermal method". Sensor Actuat B-Chem, 158 : 299- 303.
  • [16] Li Y., Liang J., Tao Z. and Chen J. 2008. “CuO particles and plates: Synthesis and gas-sensor application". Mater. Res. Bull., 43, : 2380-2385.
  • [17] Rai A. K., Anh L. T., Gim J., Mathew V., Kang J., Paul B.J., Singh N.K., Song J., Kim J. 2013. “Facile approach to synthesize CuO/ reduced graphene oxide nanocomposite as anode materials for lithium-ion battery". J. Power Sources 244 : 435-441.
  • [18] Kidowaki H., Oku T., Akiyama T., Suzuki A., Jeyadevan B., Cuya J. 2012. “Fabrication and characterization of CuO-based solar cells". J. Mater. Sci. Res. 1 : 138-143.
  • [19] Shinde S. K., Dubal D. P., Ghodake G. S., Gomez-Romero P., Kimc S., Fulari V.J. 2015. “Influence of Mn incorporation on the supercapacitive properties of hybrid CuO/Cu(OH)2 electrodes". RSC Adv 5 : 30478-30484.
  • [20] Ahir M., Bhattacharya S., Karmakar S. 2016. “Tailored-CuO-nanowire decorated with folic acid mediated coupling of the mitochondrial- ROS generation and miR425-PTEN axis in furnishing potent anti-cancer activity in human triple negative breast carcinoma cells". Biomaterials 76 : 115-132.
  • [21] Chu C. L., Lu H. C., Lo C. Y., Lai C. Y., Wang Y. H.. 2009. “Physical properties of copper oxide thin films prepared by dc reactive magnetron sputtering under different oxygen partial pressures". Phys. B 404 : 4831-4834.
  • [22] Santra K., Sarkar C. K., Mukherjee M. K., Ghosh B. 1992. “Copper oxide thin films grown by plasma evaporation method". Thin Solid Films 213 : 226-229.
  • [23] Vila M., Diaz-Guerra C., Piqueras J. 2010. “Optical and magnetic properties of CuO nanorods grown by thermal oxidation". J. Phys. D: Appl. Phys. 43 : 135403-13.
  • [24] Zhang Q., Xu D., Zhou X., Wu X., Zhang K. 2014. “Solar Hydrogen Generation from Water Splitting Using ZnO/CuO Hetero Nanostructures". Enrgy Proced 61 : 345- 48.
  • [25] Kawwam M., Alharbi F. H., Kayed T., Aldwayyan A., Alyamani A., Tabet N., Lebbou K. 2013. “Characterization of CuO(111)/ MgO(100) films grown under two different PLD backgrounds". Appl. Surf. Sci. 276 : 7-12.
  • [26] Medina-Valtierra J., Frausto-Reyes C., Camarillo-Martinez G., Ramirez-Ortiz J.A. 2009. “Complete oxidation of isopropanol over Cu2O3 (paramelaconite) coating deposited on fiberglass by CVD". Appl. Catal. A 356 : 36-42.
  • [27] Ramirez-Ortiza J., Ogura T., Medina-Valtierra J., Acosta-Ortiz S. E., Bosch P., Reyes J. A., Lara V. H. 2001. “A catalytic application of Cu2O and CuO films deposited over fiberglass". Appl. Surf. Sci. 174 : 177-184.
  • [28] Ghodselahi T., Vesaghi M. A., Shafiekhani A., Baghizadeh A., Lameii M. 2008. “XPS study of the Cu@ Cu2O core-shell nanoparticles". Appl. Surf. Sci. 255 : 2730-2734.
  • [29] Xu M., Wang F., Ding B., Song X. and Fang J. 2012. “Electrochemical synthesis of leaf-like CuO mesocrystals and their lithium storage properties". RSC Adv. 2 : 2240-2243.
  • [30] Yuan G.Q., Jiang H.F., Lin C. and Liao S.J. 2007. “Shape- and size-controlled electrochemical synthesis of cupric oxide nanocrystals". J. Cryst. Growth 303 : 400-406.
  • [31] Cao M.H., Hu C.W., Wang Y.H., Guo Y.H., Guo C.X. and Wang E.B. 2003. “A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods". Chem. Commun. 15 : 1884-1885.
  • [32] Liu L., Hong K., Hu T. and Xu M. 2012. “Synthesis of aligned copper oxide nanorod arrays by a seed mediated hydrothermal method". J. Alloys Compd. 511 : 195-197.
Uwagi
Praca współfinansowana przez Ministerstwo Nauki i Szkolnictwa Wyższego.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04a81229-8857-4f48-8951-e4b84e9363db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.