PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cooling and heating of the fluid in the cylindrical volume

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Experimental studies of the non-stationary heat exchange in the system «environment I – body II» have been carried out. It is established that in the body II, which consists of the fluid and thin-walled metal envelope, the characteristic features of the regular thermal mode occur, i.e., cooling (heating) rate of the body II- m = const; heat transfer coefficient between the water (environment I) and body II is practically stable α1 = const; uneven temperatures distribution coefficient in the body II ψ = const. This new notion of the heat transfer regularities in the body II is planned to apply for further development of the experimental-calculation method for the forecasting of the heat exchange intensity in the compound fluid media with limited information regarding thermophysical and rheological properties.
Twórcy
  • Vinnytsia National Technical University, 95 Khmel'nyts'ke Hwy, Vinnytsia, 21000, Ukraine
  • Vinnytsia National Technical University, 95 Khmel'nyts'ke Hwy, Vinnytsia, 21000, Ukraine
  • Vinnytsia National Technical University, 95 Khmel'nyts'ke Hwy, Vinnytsia, 21000, Ukraine
  • Vinnytsia National Technical University, 95 Khmel'nyts'ke Hwy, Vinnytsia, 21000, Ukraine
  • Vinnytsia National Technical University, 95 Khmel'nyts'ke Hwy, Vinnytsia, 21000, Ukraine
Bibliografia
  • [1] I.M. Fedotkin, S.J. Tkachenko, Thermal hydrodynamic processes in the evaporators, Technika, Kyiv, 1975.
  • [2] G.B. Froishteter, S.Y. Danilevich, N.V. Radionova, Flow and heat exchange of non-Newtonian fluids in pipes, Naukova Dumka, Kyiv, 1990.
  • [3] O. Berdyev, Experimental study of the heat exchange in the installations of biogas production, Scientific-Production Corporation “Sun", Ashkabad, 1989.
  • [4] J. Chen, C. Ma, X. Ji, X. Lu, C. Wang, Mechanism Study of Waste Heat Recovery from Slurry by Surface Scraped Heat Exchanger, in: Energy Procedia, 2017: pp. 1109–1115. https://doi.org/10.1016/j.egypro.2017.03.474.
  • [5] Y. Liu, J. Chen, X. Lu, X. Ji, C. Wang, Reducing the agitation power consumption in anaerobic digestion of corn straw by adjusting the rheological properties, in: Energy Procedia, 2019: pp. 1267–1272. https://doi.org/10.1016/j.egypro.2019.01.314.
  • [6] J. Chen, Y. Liu, X. Lu, X. Ji, C. Wang, Designing heat exchanger for enhancing heat transfer of slurries in biogas plants, in: Energy Procedia, 2019: pp. 1288–1293. https://doi.org/10.1016/j.egypro.2019.01.321.
  • [7] J. Chen, M. Risberg, L. Westerlund, U. Jansson, X. Lu, C. Wang, X. Ji, A high efficient heat exchanger with twisted geometries for biogas process with manure slurry, Appl. Energy. 279 (2020) 115871. https://doi.org/10.1016/j.apenergy.2020.115871.
  • [8] J. Chen, X. Ji, X. Lu, C. Wang, Mechanism Study of Heat Transfer Enhancement Using Twisted Hexagonal Tube with Slurry from Biogas Plant, Energy Procedia. 142 (2017) 880–885. https://doi.org/10.1016/j.egypro.2017.12.141.
  • [9] N.V. Tkachenko, Resident, Heat-mass exchange and hydrodynamic processes in the elements of bioconversion system, Universum-Vinnytsia, Vinnytsia, 2011.
  • [10] S.J. Tkachenko, N.V. Pishenina, New methods of heat-exchange intensity determination in the systems of the organic waste disposal, VNTU, Vinnytsia, 2017.
  • [11] T.Y. Tkachenko, S.J. Rumiantseva, N.V. Pishenina, Determination of the parameters of the ”virtual model fluid” for the assessment of the heat-exchange intensity in real condition of heat technology, Power Ind. Econ. Technol. Ecol. 35 (2014) 27–35.
  • [12] S.. Tkachenko, N.V. Pishenina, S.V. Dyshliuk, Method of determination of heat transfer coefficient on the conditions of the convective heat exchange of the organic mixture, №105399, 2014.
  • [13] S.J. Tkachenko, T.Y. Pishenina, N.V. Rumiantseva, Method of determining of rheostability of the mixtures with undetermined thermal physical properties in real thermal hydrodynamic bio-and chemical-technological processes, №110718, 2016.
  • [14] S.I. Tkachenko, N. V. Pishenina, T.Y. Rumyantseva, Processes of heat transfer in rheologically unstable mixtures of organic origin, J. Eng. Phys. Thermophys. 87 (2014) 721–728. https://doi.org/10.1007/s10891-014-1065-6.
  • [15] G.M. Kondrat’ev, Regular thermal regime, State Publishing House of Technical-Theoretical Literature, Moscow, 1954.
  • [16] A.V. Lykov, Heat-mass exchange, Energy, Moscow, 1971.
  • [17] A.V. Osipova, Experimental study of heat-exchange processes, Energy, Moscow-Leningrad, 1964.
  • [18] V.P. Isachenko, V.A. Osipova, A.S. Sukomel, Heat transfer, Energy, Moscow, 1975.
  • [19] S.J. Tkachenko, I. Denesiak, Prospects of the methods of regular mode application for the determination of heat-exchange intensity in the limited volume, Mod. Technol. Mater. Constr. Civ. Eng. 23 (2017) 106–112.
  • [20] S. Tkachenko, O. Vlasenko, STUDYING THE TEMPLE OF HEATING OF HETEROGENEOUS RELATED ENVIRONMENT, Mod. Technol. Mater. Des. Constr. 26 (2019) 127–133. https://doi.org/10.31649/2311-1429-2019-1-127-133.
  • [21] M.A. Mikheev, I.M. Mikheeva, Fundamentals of heat-transfer, Energy, Moscow, 1977.
  • [22] S.J. Tkachenko, N.V. Rezydent, D.I. Denesyak, Experimental study of the nonstationary heat exchange in the mixture, Sci. Work. Vinnytsia Natl. Tech. Univ. 1 (2018).
  • [23] S.Y. Tkachenko, D. V. Stepanov, N.D. Stepanova, Analysis of Social and Energy and Sustainable Efficiency of Biogas Technology Implementation, Visnyk Vinnytsia Politech. Inst. 149 (2020) 34–41. https://doi.org/10.31649/1997-9266-2020-149-2-34-41.
  • [24] P.V. Bogdanov, System of heating of the liquid pig manure in the technologies of anaerobic fermentation: Extended abstract of dissertation for Scientific Degree of Candidate of Science, (1990).
  • [25] Y.R. Chen, HEAT TRANSFER IN LAMINAR TUBE FLOW OF BEEF CATTLE MANURE SLURRIES., Trans. Am. Soc. Agric. Eng. 31 (1988) 892–897. https://doi.org/10.13031/2013.30796.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04a458d7-d1b4-43d5-94a9-58b6404cbcef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.