Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Experimental studies of the non-stationary heat exchange in the system «environment I – body II» have been carried out. It is established that in the body II, which consists of the fluid and thin-walled metal envelope, the characteristic features of the regular thermal mode occur, i.e., cooling (heating) rate of the body II- m = const; heat transfer coefficient between the water (environment I) and body II is practically stable α1 = const; uneven temperatures distribution coefficient in the body II ψ = const. This new notion of the heat transfer regularities in the body II is planned to apply for further development of the experimental-calculation method for the forecasting of the heat exchange intensity in the compound fluid media with limited information regarding thermophysical and rheological properties.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
15--26
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- Vinnytsia National Technical University, 95 Khmel'nyts'ke Hwy, Vinnytsia, 21000, Ukraine
autor
- Vinnytsia National Technical University, 95 Khmel'nyts'ke Hwy, Vinnytsia, 21000, Ukraine
autor
- Vinnytsia National Technical University, 95 Khmel'nyts'ke Hwy, Vinnytsia, 21000, Ukraine
autor
- Vinnytsia National Technical University, 95 Khmel'nyts'ke Hwy, Vinnytsia, 21000, Ukraine
autor
- Vinnytsia National Technical University, 95 Khmel'nyts'ke Hwy, Vinnytsia, 21000, Ukraine
Bibliografia
- [1] I.M. Fedotkin, S.J. Tkachenko, Thermal hydrodynamic processes in the evaporators, Technika, Kyiv, 1975.
- [2] G.B. Froishteter, S.Y. Danilevich, N.V. Radionova, Flow and heat exchange of non-Newtonian fluids in pipes, Naukova Dumka, Kyiv, 1990.
- [3] O. Berdyev, Experimental study of the heat exchange in the installations of biogas production, Scientific-Production Corporation “Sun", Ashkabad, 1989.
- [4] J. Chen, C. Ma, X. Ji, X. Lu, C. Wang, Mechanism Study of Waste Heat Recovery from Slurry by Surface Scraped Heat Exchanger, in: Energy Procedia, 2017: pp. 1109–1115. https://doi.org/10.1016/j.egypro.2017.03.474.
- [5] Y. Liu, J. Chen, X. Lu, X. Ji, C. Wang, Reducing the agitation power consumption in anaerobic digestion of corn straw by adjusting the rheological properties, in: Energy Procedia, 2019: pp. 1267–1272. https://doi.org/10.1016/j.egypro.2019.01.314.
- [6] J. Chen, Y. Liu, X. Lu, X. Ji, C. Wang, Designing heat exchanger for enhancing heat transfer of slurries in biogas plants, in: Energy Procedia, 2019: pp. 1288–1293. https://doi.org/10.1016/j.egypro.2019.01.321.
- [7] J. Chen, M. Risberg, L. Westerlund, U. Jansson, X. Lu, C. Wang, X. Ji, A high efficient heat exchanger with twisted geometries for biogas process with manure slurry, Appl. Energy. 279 (2020) 115871. https://doi.org/10.1016/j.apenergy.2020.115871.
- [8] J. Chen, X. Ji, X. Lu, C. Wang, Mechanism Study of Heat Transfer Enhancement Using Twisted Hexagonal Tube with Slurry from Biogas Plant, Energy Procedia. 142 (2017) 880–885. https://doi.org/10.1016/j.egypro.2017.12.141.
- [9] N.V. Tkachenko, Resident, Heat-mass exchange and hydrodynamic processes in the elements of bioconversion system, Universum-Vinnytsia, Vinnytsia, 2011.
- [10] S.J. Tkachenko, N.V. Pishenina, New methods of heat-exchange intensity determination in the systems of the organic waste disposal, VNTU, Vinnytsia, 2017.
- [11] T.Y. Tkachenko, S.J. Rumiantseva, N.V. Pishenina, Determination of the parameters of the ”virtual model fluid” for the assessment of the heat-exchange intensity in real condition of heat technology, Power Ind. Econ. Technol. Ecol. 35 (2014) 27–35.
- [12] S.. Tkachenko, N.V. Pishenina, S.V. Dyshliuk, Method of determination of heat transfer coefficient on the conditions of the convective heat exchange of the organic mixture, №105399, 2014.
- [13] S.J. Tkachenko, T.Y. Pishenina, N.V. Rumiantseva, Method of determining of rheostability of the mixtures with undetermined thermal physical properties in real thermal hydrodynamic bio-and chemical-technological processes, №110718, 2016.
- [14] S.I. Tkachenko, N. V. Pishenina, T.Y. Rumyantseva, Processes of heat transfer in rheologically unstable mixtures of organic origin, J. Eng. Phys. Thermophys. 87 (2014) 721–728. https://doi.org/10.1007/s10891-014-1065-6.
- [15] G.M. Kondrat’ev, Regular thermal regime, State Publishing House of Technical-Theoretical Literature, Moscow, 1954.
- [16] A.V. Lykov, Heat-mass exchange, Energy, Moscow, 1971.
- [17] A.V. Osipova, Experimental study of heat-exchange processes, Energy, Moscow-Leningrad, 1964.
- [18] V.P. Isachenko, V.A. Osipova, A.S. Sukomel, Heat transfer, Energy, Moscow, 1975.
- [19] S.J. Tkachenko, I. Denesiak, Prospects of the methods of regular mode application for the determination of heat-exchange intensity in the limited volume, Mod. Technol. Mater. Constr. Civ. Eng. 23 (2017) 106–112.
- [20] S. Tkachenko, O. Vlasenko, STUDYING THE TEMPLE OF HEATING OF HETEROGENEOUS RELATED ENVIRONMENT, Mod. Technol. Mater. Des. Constr. 26 (2019) 127–133. https://doi.org/10.31649/2311-1429-2019-1-127-133.
- [21] M.A. Mikheev, I.M. Mikheeva, Fundamentals of heat-transfer, Energy, Moscow, 1977.
- [22] S.J. Tkachenko, N.V. Rezydent, D.I. Denesyak, Experimental study of the nonstationary heat exchange in the mixture, Sci. Work. Vinnytsia Natl. Tech. Univ. 1 (2018).
- [23] S.Y. Tkachenko, D. V. Stepanov, N.D. Stepanova, Analysis of Social and Energy and Sustainable Efficiency of Biogas Technology Implementation, Visnyk Vinnytsia Politech. Inst. 149 (2020) 34–41. https://doi.org/10.31649/1997-9266-2020-149-2-34-41.
- [24] P.V. Bogdanov, System of heating of the liquid pig manure in the technologies of anaerobic fermentation: Extended abstract of dissertation for Scientific Degree of Candidate of Science, (1990).
- [25] Y.R. Chen, HEAT TRANSFER IN LAMINAR TUBE FLOW OF BEEF CATTLE MANURE SLURRIES., Trans. Am. Soc. Agric. Eng. 31 (1988) 892–897. https://doi.org/10.13031/2013.30796.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04a458d7-d1b4-43d5-94a9-58b6404cbcef