PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interpretation of gravity anomaly over 2D vertical and horizontal thin sheet with fnite length and width

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gravity data are often used for delineation of the lateral and vertical extension of mineralized bodies buried at diferent depths. Various parameters associated with the buried bodies are the primary concern for mineral exploration purposes. Hence, a reliable and efcacious interpretation method is developed for the delineation of gravity anomaly data over the 2D vertical and horizontal sheet with fnite length and width associated with mineralized bodies. The parameters viz. amplitude coefcient (k), location (x0), depth to the top of the body (h), length of the sheet (L), and shape factor (q) for 2D vertical sheet type structure and depth (h) and width (w) of the sheet for 2D horizontal sheet were resolved. Restricting x0 and q has given very reliable results for the 2D vertical sheet, and the w for 2D horizontal sheet shows the problem of equivalence. However, in all cases, the delineated parameters are within the expected uncertainty. The present interpretation method was applied to synthetic and noisy data and three feld examples from the USA, Canada, and Sweden for mineral exploration purposes. It has also been seen that the present study is more reliable in delineating the actual structure associated with mineralized bodies for the 2D vertical and horizontal sheet-type structure. The delineated parameters are in outstanding agreement with the earlier works, borehole information and also updated the actual subsurface structure.
Czasopismo
Rocznik
Strony
1083--1096
Opis fizyczny
Bibliogr. 71 poz.
Twórcy
  • Department of Geology, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, UP 221005, India
Bibliografia
  • 1. Abdelrahman EM (1990) Discussion on “A least-squares approach to depth determination from gravity data” by Gupta O. P. Geophysics 55(3):376–378
  • 2. Abdelrahman EM, El-Araby TM (1993) A least-squares minimization approach to depth determination from moving average residual gravity anomalies. Geophysics 59:1779–1784
  • 3. Abdelrahman EM, Sharafeldin SM (1995) A least-squares minimization approach to shape determination from gravity data. Geophysics 60:589–590
  • 4. Abdelrahman EM, Essa KS (2013) A new approach to semi-infinite thin slab depth determination from second moving average residual gravity anomalies. Explor Geophys 44:185–191
  • 5. Abdelrahman EM, Essa KS (2015) Three least-squares Minimization Approaches to Interpret Gravity Data Due to Dipping Faults. Pure App Geophys 172:427–438
  • 6. Abdelrahman EM, El-Araby TM, Essa KS (2003) Shape and depth solutions from third moving average residual gravity anomalies using the window curves method: Kuwait. J Science Eng 30:95–108
  • 7. Abdelrahman EM, Bayoumi AI, El-Araby HM (1991) A least-squares minimization approach to invert gravity data. Geophysics 56:115–118
  • 8. Abdelrahman EM, Gobashy MM, Essa K, Abo-Ezz ER, El-Araby TM (2016) A least-squares minimization approach to interpret gravity data due to 2D horizontal thin sheet of finite width. Arab J Geosci 9:515
  • 9. Abedi M, Afshar A, Ardestani VE, Norouzi GH, Lucas C (2010) Application of various methods for 2D inverse modeling of residual gravity anomalies. Acta Geophys 58(2):317–336
  • 10. Al-Garni MA (2018) Mathematical analysis of gravity anomalies due to an infinite sheet-like structure. Arab J Geosci 11:138
  • 11. Anderson NL, Essa KS, Elhussein M (2020) A comparison study using particle swarm optimization inversion algorithm for gravity anomaly interpretation due to a 2D vertical fault structure. J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2020.104120
  • 12. Asfahani J, Tlas M (2012) Fair function minimization for direct interpretation of residual gravity anomaly profiles due to spheres and cylinders. Pure Appl Geophys 169:157–165
  • 13. Atchuta Rao D, Ram Babu HV, Venkata Raju DC (1985) Inversion of gravity and magnetic anomalies over some bodies of simple geometric shape. Pure Appl Geophys 123:239–249
  • 14. Balkaya C, Ekinci YL, Gokturkler G, Turan S (2017) 3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm. J Appl Geophys 136:372–386
  • 15. Biswas A (2015) Interpretation of residual gravity anomaly caused by a simple shaped body using very fast simulated annealing global optimization. Geosci Front 6(6):875–893
  • 16. Biswas A (2016) Interpretation of gravity and magnetic anomaly over thin sheet-type structure using very fast simulated annealing global optimization technique. Model Earth Syst Environ 2(1):30
  • 17. Biswas A, Parija MP, Kumar S (2017) Global nonlinear optimization for the interpretation of source parameters from total gradient of gravity and magnetic anomalies caused by thin dyke. Ann Geophys 60(2):1–17
  • 18. Blakely RJ, Simpson RW (1986) Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 51:1494–1498
  • 19. Ekinci YL, Balkaya C, Gokturkler G, Turan S (2016) Model parameter estimations from residual gravity anomalies due to simple-shaped sources using differential evolution algorithm. J Appl Geophys 129:133–147
  • 20. Ekinci YL, Balkaya Ç, Göktürkler G (2019) Parameter estimations from gravity and magnetic anomalies due to deep-seated faults: differential evolution versus particle swarm optimization. Turk J Earth Sci 28:860–881
  • 21. Ekinci YL, Balkaya Ç, Göktürkler G (2020) Global optimization of near-surface potential field anomalies through metaheuristics. In: Biswas A, Sharma SP (eds) Advances in modeling and interpretation in near surface geophysics. Springer, Cham, pp 155–188
  • 22. Elawadi E, Salem A, Ushijima K (2001) Detection of cavities from gravity data using a neural network. Explor Geophys 32:75–79
  • 23. Essa KS (2014) New fast least-squares algorithm for estimating the best-fitting parameters of some geometric-structures to measured gravity anomalies. J Adv Res 5:57–65
  • 24. Essa KS, Munschy M (2019) Gravity data interpretation using the particle swarm optimization method with application to mineral exploration. J Earth Syst Sci 128:123
  • 25. Essa KS, Géraud Y (2020) Parameters estimation from the gravity anomaly caused by the two-dimensional horizontal thin sheet applying the global particle swarm algorithm. J Petroleum Sci Eng 193:107421
  • 26. Fernández-Martínez JL, Fernández-Muñiz Z, Cerenea A, Pallero LG, DeAndrés-Galiana EJ, Pedruelo-González LM, Álvarez O, Fernández-Ovies FJ (2020) How to deal with uncertainty in inverse and classification problems. In: Biswas A, Sharma S (eds) Advances in modeling and interpretation in near surface geophysics. Springer, Cham, pp 401–414
  • 27. Geldart LP, Gill DE, Sharma B (1966) Gravity anomalies of two-dimensional faults. Geophysics 31:372–397
  • 28. Grant FS, West GF (1965) Interpretation theory in applied geophysics. McGraw Hill Book Co, New York
  • 29. Green R (1976) Accurate determination of the dip angle of a geological contact using the gravity method. Geophys Prospect 24:265–272
  • 30. Gupta OP (1983) A least-squares approach to depth determination from gravity data. Geophysics 48:360–375
  • 31. Hartmann RR, Teskey D, Friedberg I (1971) A system for rapid digital aeromagnetic interpretation. Geophysics 36:891–918
  • 32. Hinze WJ, von Frese RRB, Saad AH (2013) Gravity and magnetic exploration: principles, practices and applications. Cambridge University Press, New York
  • 33. Holstein H, Fitzgerald D, Anastasiades C (2010) Gravi-magnetic anomalies of uniform thin polygonal sheets. In: 72nd European association of geoscientists and engineers conference and exhibition incorporating SPE EUROPEC, Barcelona, Spain, pp 14–17
  • 34. Ingber L, Rosen B (1992) Genetic algorithms and very fast simulated reannealing: a comparison. Math Comput Model 16(11):87–100
  • 35. Jain S (1976) An automatic method of direct interpretation of magnetic profiles. Geophysics 41:531–541
  • 36. Kara I, Hoskan N (2016) An easy method for interpretation of gravity anomalies due to vertical finite lines. Acta Geophys 64:2232–2243
  • 37. Khalil MA, Santos FM, Farzamian M (2014) 3D gravity inversion and Euler deconvolution to delineate the hydro-tectonic regime in El-Arish area, northern Sinai Peninsula. J Appl Geophys 103:104–113
  • 38. Khalil MA, Santos FM, Farzamian M, El-Kenawy A (2015) 2-D Fourier transform analysis of the gravitational field of Northern Sinai Peninsula. J Appl Geophys 115:1–10
  • 39. Klingele EE, Marson I, Kahlem HG (1991) Automatic interpretation of gravity gradimetric data in two dimensions: vertical gradient. Geophys Prospect 39:407–434
  • 40. Lines LR, Treitel S (1984) A review of least-squares inversion and its application to geophysical problems. Geophys Prospect 32:159–186
  • 41. Mackleod IN, Jones K, Dai TF (1993) 3-D analytical signal in the interpretation of total magnetic field data at low magnetic latitudes. Explor Geophys 24:679–688
  • 42. Marson I, Klingele EE (1993) Advantages of using the vertical gradient of gravity for 3-D interpretation. Geophysics 58:1588–1595
  • 43. Mehanee SA (2014) Accurate and efficient regularized inversion approach for the interpretation of isolated gravity anomalies. Pure Appl Geophys 171:1897–1937
  • 44. Mehanee SA, Essa KS (2015) 2.5D regularized inversion for the interpretation of residual gravity data by a dipping thin sheet: numerical examples and case studies with an insight on sensitivity and non-uniqueness. Earth Planets Space 67:130
  • 45. Mohan NL, Anandababu L, Roa S (1986) Gravity interpretation using the Mellin transform. Geophysics 51:114–122
  • 46. Mosegaard K, Tarantola A (1995) Monte Carlo sampling of solutions to inverse problems. J Geophys Res 100(B7):12431–12447
  • 47. Nabighian MN (1972) The analytical signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics 37:507–517
  • 48. Nabighian MN (1974) Additional comments on the analytical signal of two-dimensional magnetic bodies with polygonal cross-section. Geophysics 39:85–92
  • 49. Nettleton LL (1942) Gravity and magnetic calculation. Geophysics 7:293–310
  • 50. Nettleton LL (1976) Gravity and magnetic in oil prospecting. Mc-Graw Hill Book Co, New York
  • 51. Odegard ME, Berg JW (1965) Gravity interpretation using the Fourier integral. Geophysics 30:424–438
  • 52. Pick M, Picha J, Vyskocil V (1973) Theory of the earth’s gravity field. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague, p 538
  • 53. Reid AB, Allsop JM, Granser H, Millett AJ, Somerton IW (1990) Magnetic interpretation in the three dimensions using Euler deconvolution. Geophysics 55:80–91
  • 54. Roy A (1966) The method of continuation in mining geophysical interpretation. Geoexploration 4:65–83
  • 55. Sen MK, Stoffa PL (1996) Bayesian inference, Gibbs sampler and uncertainty estimation in geophysical inversion. Geophys Prospect 44:313–350
  • 56. Sen MK, Stoffa PL (2013) Global optimization methods in geophysical inversion. Cambridge University Press, Cambridge
  • 57. Sharma SP (2012) VFSARES—a very fast simulated annealing FORTRAN program for interpretation of 1-D DC resistivity sounding data from various electrode array. Comput Geosci 42:177–188
  • 58. Sharma SP, Biswas A (2013) Interpretation of self-potential anomaly over 2D inclined structure using very fast simulated annealing global optimization—an insight about ambiguity. Geophysics 78(3):WB3–WB15
  • 59. Sharma B, Geldart LP (1968) Analysis of gravity anomalies of two-dimensional faults using Fourier transforms. Geophys Prospect 16:77–93
  • 60. Shaw RK, Agarwal BNP (1990) The application of Walsh transforms to interpret gravity anomalies due to some simple geometrically shaped causative sources: a feasibility study. Geophysics 55:843–850
  • 61. Siegel HO, Winkler HA, Boniwell JB (1957) Discovery of the Mobrun Copper Ltd. sulphide deposit, Noranda Mining District, Quebec. In: Methods and case histories in mining geophysics. Commonwealth Mining Metallurgical Congress, 6th, Vancouver, 1957, pp 237–245
  • 62. Singh A, Biswas A (2016) Application of global particle swarm optimization for inversion of residual gravity anomalies over geological bodies with idealized geometries. Nat Resour Res 25(3):297–314
  • 63. Skeels DC (1963) An approximation solution of the problem of maximum depth in gravity interpretation. Geophysics 28:724–735
  • 64. Srivastava S, Agarwal BNP (2010) Inversion of the amplitude of the two-dimensional analytic signal of the magnetic anomaly by the particle swarm optimization technique. Geophys J Int 182:652–662
  • 65. Srivastava S, Datta D, Agarwal BNP, Mehta S (2014) Applications of Ant Colony Optimization in determination of source parameters from total gradient of potential fields. Near Surf Geophys 12:373–389
  • 66. Sundararajan N, Srinivas Y, Laxminarayana Rao T (2000) Sundararajan transform—a tool to interpret potential field anomalies. Explor Geophys 31:622–628
  • 67. Talwani M, Worze JL, Landisman M (1959) Rapid gravity computations for two-dimensional bodies with applications to theMendocino submarine fracture zone. J Geophys Res 64:49–59
  • 68. Thompson DT (1982) EULDPH-a new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47:31–37
  • 69. Tlas M, Asfahani J (2018) Interpretation of gravity anomalies due to simple geometric-shaped structures based on quadratic curve regression. Contrib Geophys Geod 48:161–178
  • 70. Tlas M, Asfahani J, Karmeh H (2005) A versatile nonlinear inversion to interpret gravity anomaly caused by a simple geometrical structure. Pure Appl Geophys 162:2557–2571
  • 71. Trivedi S, Kumar P, Parija MP, Biswas A (2020) Global optimization of model parameters from the 2-D analytic signal of gravity and magnetic anomalies. In: Biswas A, Sharma SP (eds) Advances in modeling and interpretation in near surface geophysics. Springer, Cham, pp 189–221
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-049faa15-b4ff-424d-bdd0-98a56ffa3e5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.