Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Zinc oxide is considered an outstanding photocatalyst candidate, but its low photo-corrosion resistance is a problem to be solved. In the ZnO-ZnS core-shell structure, ZnS acts as a protective layer for the ZnO core, and thus, it can enhance stability and long-term performance. The ZnO-ZnS core-shell structure is synthesized into various nanoscale morphologies with high specific surface areas to improve photocatalytic efficiency. However, they are easily agglomerated and are hard to separate from reaction media. In this study, micro-sized bumpy spheres of ZnO-ZnS core-shell structure were prepared via facile chemical transformation of as-prepared ZnO. After sulfurization of the ZnO template, it was confirmed through SEM, TEM, EDS, and XPS analysis that a uniform ZnS shell layer was formed without significant change in the initial ZnO morphology. The ZnO-ZnS core-shell microsphere has shown superior efficiency and stability in the photocatalytic degradation of Rhodamine B compared with pristine ZnO microspheres.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
91--94
Opis fizyczny
Bibliogr. 19 poz., fot., rys.
Twórcy
autor
- Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul 01811, Republic of Korea
autor
- Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul 01811, Republic of Korea
autor
- Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul 01811, Republic of Korea
autor
- Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul 01811, Republic of Korea
autor
- Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul 01811, Republic of Korea
Bibliografia
- [1] U.I. Gaya, A.H. Abdullah, J. Photochem. Photobiol. C 9, 1 (2008).
- [2] P.R. Gogate, A.B. Pandit, Adv. Environ. Res. 8, 501 (2004).
- [3] J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Adv. Mater. 29, 1601694 (2017).
- [4] A. Kudo, Y. Miseki. Chem. Soc. Rev. 38, 253 (2009).
- [5] L. Yu, W. Chen, D. Li, J. Wang, Y. Shao, M. He, P. Wang, X. Zheng, Appl. Catal. B: Environ. 164, 453 (2015).
- [6] C. Hariharan, Appl. Catal. A: Gen. 304, 55 (2006).
- [7] M.D. Driessen, T.M. Miller, V.H. Grassian J. Mol. Catal. A: Chem. 131, 149 (1998).
- [8] Y. Jo, C.Y. Woo, S.K. Hong, H.W. Lee, J. Powder Mater. 27, 305 (2020).
- [9] D.C. Look, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 80, 383 (2001).
- [10] L. Wang, X. Hou, F. Li, G. He, L. Li, Mater. Lett. 161, 368 (2015).
- [11] J. Lahiri, M. Batzill, J. Phys. Chem. C 112, 4304, (2008).
- [12] Z. Guo, W. Huo, T. Cao, X. Liu, S. Ren, J. Yang, H. Ding, K. Chen, F. Dong, Y. Zhang, J. Colloid Interface Sci. 588, 826 (2021).
- [13] A. Sadollahkhani, I. Kazeminezhad, J. Lu, O. Nur, L. Hultman, M. Willander, RSC Adv. 4, 36940 (2014).
- [14] X. Gao, J. Wang, J. Yu, H. Xu, Cryst. Eng. Comm. 17, 6328 (2015).
- [15] K.S. Ranjith, A. Senthamizhan, B. Balusamya, T. Uyar, Catal. Sci. Technol. 7, 1167 (2017).
- [16] J. Yu, W. Liu, H. Yu, Cryst. Growth Des. 8, 930 (2008).
- [17] X. Yang, H. Liu, T. Li, B. Huang, W. Hu, Z. Jiang, J. Chen, Q. Niu, Int. J. Hydrog. Energy 45, 26967 (2020).
- [18] Y. Choi, Y.-I. Lee, J. Korean Ceram. Soc. 55, 261 (2018).
- [19] J.-H. Yoo, M. Ji, J.H. Kim, C.-H. Ryu, Y.-I. Lee, J. Photochem. Photobiol. A 401, 112782 (2020).
Uwagi
This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0490720f-3227-48db-8cc7-5d04f6160a80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.